(STERE JavaScript diE)

JR3C 2010 4 3 H 23 H¥E A&, XUBrE i, WODHRIE !

http://blog.sina.com.cn/situdesign

%% Loading and Execution JIZEAIEIT coovooiiveoiriierciereeceeceii sttt 2
B Data AcCeSS BUIEUT I oottt 26
H 7 DOM Scripting DOM ZHFE ..ot 56
VU Algorithms and Flow Control SVEFIEEFE T coovovvivieiiee s 104
%A% Strings and Regular Expressions 45 H FIENZRIE T oo 139
FH7NE Responsive Interfaces MAMFE T ..ot 184
FEE Ajax TP JavaScript T XMLo.oovieieeeececeeeeeceeeeee et 216
5)\E Programming Practices ZMFETEERooveveceeeeeeeeeee e 261
% JL¥ Building and Deploying High-Performance JavaScript APpliCationsccccoeveirvrierueierisiesneesneennns 279
BT EE TOOIS Tl s 306

#—E Loading and Execution Jn#EfiE4T

JavaScript performance in the browser is arguably the most important usability issue facing developers. The
problem is complex because of the blocking nature of JavaScript, which is to say that nothing else can happen
while JavaScript code is being executed. In fact, most browsers use a single process for both user interface (UI)
updates and JavaScript execution, so only one can happen at any given moment in time. The longer JavaScript

takes to execute, the longer it takes before the browser is free to respond to user input.

JavaScript 7E3X Vs HIPERE, AT A & T A 38 BT B 16 (14 e T B (¥ m] FH P e @ b] @ K] JavaScript
HIBHZERFAETIT AR 2%, Wt Ui, 4 JavaScript 24T I AR R FIG A BERN W G 4b B . Fsz b, RZHN K
AL R AL EE UT 32371 JavaScript 1847552 MT45, 17— 8] e — MES5#AT . JavaScript
1BAT T A I, I8 AE B B 3 PR SR N A N I R A AR IR TRl 2 1

On a basic level, this means that the very presence of a <script> tag is enough to make the page wait for the
script to be parsed and executed. Whether the actual JavaScript code is inline with the tag or included in an
external file is irrelevant; the page download and rendering must stop and wait for the script to complete before
proceeding. This is a necessary part of the page’s life cycle because the script may cause changes to the page
while executing. The typical example is using document.write() in the middle of a page (as often used by

advertisements). For example:

MIEAJZ B, XA <script>Fr25 (1 1 BLAE S GO PURAARNT . 24T ILAEAT . AR SEPsi
JavaScript fURS 2 IR IKE 2 5 AL DA TSN SCAF R, GO BT R s |, SEAF A
SEIMIXEERE T, RIS A RELRSE . X GO A i A I ANTT AR 23, RO BIAS W] REAE Ie AT R A 8 it i
7. SR & document.write() BRI £, {5141
<html>

<head>

<title>Script Example</title>

</head>
<body>

<p>

<script type="text/javascript">
document.write(*'The date is " + (new Date()).toDateString());
</script>
</p>
</body>
</html>
When the browser encounters a <script> tag, as in this HTML page, there is no way of knowing whether the
JavaScript will insert content into the <p>, introduce additional elements, or perhaps even close the tag. Therefore,
the browser stops processing the page as it comes in, executes the JavaScript code, then continues parsing and
rendering the page. The same takes place for JavaScript loaded using the src attribute; the browser must first
download the code from the external file, which takes time, and then parse and execute the code. Page rendering

and user interaction are completely blocked during this time.

AP AR E A <script>ARZEIN, IEWEIT HTML G OIRFE, Tk JavaScript /& 157 7E<p>$r%E
IIMANAE . BRI, BBE s IOk, J8AT I JavaScript AURY, SRS ARSI, BHIE DU . FIFER S AR
FEAE I sre B INZ JavaScript A FEH o JUNLER A0 15 25 N BAMESCAFIACRS, X2 LEITa], R A
fERTIFEAT IS . R, ST AN AL TR e A B IE

Script Positioning BiA<f7 &

The HTML 4 specification indicates that a <script> tag may be placed inside of a <head> or <body> tag in an
HTML document and may appear any number of times within each. Traditionally, script> tags that are used to
load external JavaScript files have appeared in the <head>, along with <link> tags to load external CSS files and
other metainformation about the page. The theory was that it's best to keep as many style and behavior
dependencies together, loading them first so that the page will come in looking and behaving correctly. For

example:

HTML 4 0%, A <script>hr2s 1] LU HTML SCRY) <head>Ek<body>Fr%5h, nJ LLZEH A £k
HIL. %8 b, <script>hr% HI T IN#Ah 8 JavaScript SCfF. <head>H /M BRILZANIL AL, IEAL A <link>hr%E
F T Ah3 €SS SCAFRIAb BT R o B30, SRl RURS AT g T MR 30 43 T8 — kS, & 5
BAbAT], AR TR A S E G AT o

<html>

<head>
<title>Script Example</title>
<-- Example of inefficient script positioning -->
<script type=""text/javascript" src=""filel.js""></script>
<script type=""text/javascript™ src=""file2.js""></script>
<script type=""text/javascript’ src=""file3.js""></script>
<link rel=""stylesheet" type=""text/css" href=""styles.css"">
</head>
<body>
<p>Hello world!</p>
</body>
</html>
Though this code seems innocuous, it actually has a severe performance issue: there are three JavaScript files
being loaded in the <head>. Since each <script> tag blocks the page from continuing to render until it has fully
downloaded and executed the JavaScript code, the perceived performance of this page will suffer. Keep in mind
that browsers don't start rendering anything on the page until the opening <body> tag is encountered. Putting
scripts at the top of the page in this way typically leads to a noticeable delay, often in the form of a blank white
page, before the user can even begin reading or otherwise interacting with the page. To get a good understanding
of how this occurs, it's useful to look at a waterfall diagram showing when each resource is downloaded. Figure

1-1 shows when each script and the stylesheet file get downloaded as the page is loading.

BRI A AR L HEN, HENTSAAETERE R fE<head>H70 N T =4 JavaScript 3.
PR RS <script>hr 2 FHLIE T AT RS, HEE e M EO0FE1T 1AM JavaScript A2)5, Ui
AEFRA REAR L AT o P b IS M i) LSS IR o BE e AT, W T AR AE I8 B <body>hR2E 2 H, AeiE
e GURIRAEAT S 23 o FHIXPP 7 iR BAS A T 0 T, 43 80— AT RASESE A AEIR , Sl RN Ui
FITFI, E5C oW L DO, ey F P ROASRERS B2, o ANRE S DUIRREA T A HL AR . Ol 1 B 3
B IE RS, FRATAE AT R A U P R . B 1-1 ol i Bad e rp, A A
ARE RS L RE .

7| filel. s _

@ fileZ. js -
—
a Files. js Lode executing]
% stvles. css _

Time

Figure 1-1. JavaScript code execution blocks other file downloads

Kl 1-1, JavaScript fURSiz A7k B BH2E LA SO/ 2

Figure 1-1 shows an interesting pattern. The first JavaScript file begins to download and blocks any of the
other files from downloading in the meantime. Further, there is a delay between the time at which filel js is
completely downloaded and the time at which file2.js begins to download. That space is the time it takes for the
code contained in filel.js to fully execute. Each file must wait until the previous one has been downloaded and
executed before the next download can begin. In the meantime, the user is met with a blank screen as the files are

being downloaded one at a time. This is the behavior of most major browsers today.

B 1-1 02— NGB IR . 55— JavaScript SCHFTFAA R4, HFPHZE T ILAb SO N EOd /. F
b, AEfilel.js NEGEZ A file2.js AR P BIAH —NER, XA filel js 5ERIEAT Pt I A . BEAS
SCAF L IRAERTH— AN SO N B BOFEAT e)n, A RETTAA A O B . 21X e So R Eu, AL i
XA B R A R 2 i W A AT A

Internet Explorer 8, Firefox 3.5, Safari 4, and Chrome 2 all allow parallel downloads of JavaScript files. This is
good news because the <script> tags don’t necessarily block other <script> tags from downloading external
resources. Unfortunately, JavaScript downloads still block downloading of other resources, such as images. And
even though downloading a script doesn’t block other scripts from downloading, the page must still wait for the
JavaScript code to be downloaded and executed before continuing. So while the latest browsers have improved
performance by allowing parallel downloads, the problem hasn’t been completely solved. Script blocking still

remains a problem.

Internet Explorer 8, Firefox 3.5, Safari 4, fll Chrome 2 fCVFIF4T F 2% JavaScript C0F. XN BRI, 4

—AN<script>FRAEIEAE N AN TN, AN P ZEH Ath<script>hriE . ANSEE, JavaScript [247598 ZEFH

FEH AN BRI R Bl R, Bl & o BIARANAC Z 18] (0 B0l B FLANRH 2, o147y [H 24545 T 47 JavaScript
RIS N BIFPAT R G A Re k. Pril, el v PadRmrERe 2 G, xm B A v e
it o BAIAS BHLIE AT IH A 1)

Because scripts block downloading of all resource types on the page, it's recommended to place all <script>
tags as close to the bottom of the <body> tag as possible so as not to affect the download of the entire page. For

example:

N AR BHLZE HAD D0 B I i) 2 R, By AHERE (9 7000 « R T A <script>HFn 8 JME) AT RE#% 1L <body>
et <L VA WIS - 8 DS K o MY T A = A1 AT P L U
<html>
<head>
<title>Script Example</title>
<link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
<p>Hello world!</p>
<-- Example of recommended script positioning -->
<script type=""text/javascript" src=""filel.js""></script>
<script type=""text/javascript™ src=""file2.js"*></script>
<script type=""text/javascript" src=""file3.js""></script>
</body>
</html>
This code represents the recommended position for <script> tags in an HTML file. Even though the script
downloads will block one another, the rest of the page has already been downloaded and displayed to the user so
that the entire page isn’t perceived as slow. This is the Yahoo! Exceptional Performance team’s first rule about

JavaScript: put scripts at the bottom.

AR JE 7R T FTERE () <script>Fr28E 7 HTML SCPFP A B . R A N e (/) AR ZE, (R ciee
NG I B R E R T T, AU IR R A s WA OK T . IXIE 2 “Yahoo! LB RE/N O T
JavaScript [155—4508 1 B ATEAE IS -

Grouping Scripts 4 4

Since each <script> tag blocks the page from rendering during initial download, it's helpful to limit the total
number of <script> tags contained in the page. This applies to both inline scripts as well as those in external files.
Every time a <script> tag is encountered during the parsing of an HTML page, there is going to be a delay while

the code is executed; minimizing these delays improves the overall performance of the page.

HI AR <script>hr%s 1 2 FHLZE GO AR RS, BT LRI DT) <script> & 2ot n] LSRR RE . XA R
JUDRT P B BN AS R A DA IANAS TR T o 5 224 BT ATT AL 21— <script>AR 2, K3 — BU (]] T AU,
17 o f/ MUK LESEIR N i) AT LA S i) B A RE

The problem is slightly different when dealing with external JavaScript files. Each HTTP request brings with it
additional performance overhead, so downloading one single 100 KB file will be faster than downloading four 25
KB files. To that end, it's helpful to limit the number of external script files that your page references. Typically, a
large website or web application will have several required JavaScript files. You can minimize the performance
impact by concatenating these files together into a single file and then calling that single file with a single <script>
tag. The concatenation can happen offline using a build tool (discussed in Chapter 9) or in real-time using a tool

such as the Yahoo! combo handler.

XA) 55 A1 JavaSeript SCAFAC BRI FES A AN o BEAS HTTP 35K =R BAMAYERE 4, T a—
> 100KB R3CFLE F DY 25KB 1SR ER . B2, b 51 AN IAS SO o g, — AN
04 3 e o I P 5 2 22 U3 5K JavaScript UM o UR AT LUREX S SCAFRE S e — AN SCfF, A2 <script>t
251 M, AT RLR D R R R o 3K — R TAE R N T TR SEIL (BRATESE 9 Bihie) , i —
ANSER) T H, 1w <Yahoo! combo handler”,

Yahoo! created the combo handler for use in distributing the Yahoo! User Interface (YUI) library files through
their Content Delivery Network (CDN). Any website can pull in any number of YUI files by using a

combo-handled URL and specifying the files to include. For example, this URL includes two files:

http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js

This URL loads the 2.7.0 versions of the yahoo-min.js and event-min.js files. These files exist separately on the
server but are combined when this URL is requested. Instead of using two <script> tags (one to load each file), a

single <script> tag can be used to load both:

Yahoo! At “Yahoo! A0 (Yahoo! User Interface, YUID) “FEGIEE A B AN, X &M
AITFRg < N 25453 9 4% (Content Delivery Network, CDN)”SEZHLIR o AL A0 — ™ I i 1] RAAsE F — AN A A URL

feti s YUI SCA- b s ee st lan, R IR URL A8 AN SCA

http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js
I URL i 2.7.0 A yahoo-min.js Al event-min.js SCA14 o 3X S8 7R AR 552 L& AN B 1 S, H 2
R S5 AR e URL 355K I, A SRR S IR E IR P45 %) o JEILIXAR V5, B I Z A

<script>hr%s CREMRZEINE N3 5 A <script>hra gl il LU A1

<htmI>
<head>
<title>Script Example</title>
<link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
<p>Hello world!</p>
<-- Example of recommended script positioning -->
<script type=""text/javascript™
src=""http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&?2.7.0/build/event/event-min.js'*></s
cript>
</body>
</html>
This code has a single <script> tag at the bottom of the page that loads multiple JavaScript files, showing the

best practice for including external JavaScript on an HTML page.

PEAHE A — A <script>h5%, A7 T TUHIKIEAS, N2 A JavaScript CF. X2 fE HTML B A5

£ NS JavaScript fH A 7775 .

Nonblocking Scripts JEBH 2 A<

JavaScript's tendency to block browser processes, both HTTP requests and UI updates, is the most notable
performance issue facing developers. Keeping JavaScript files small and limiting the number of HTTP requests
are only the first steps in creating a responsive web application. The richer the functionality an application
requires, the more JavaScript code is required, and so keeping source code small isn't always an option. Limiting
yourself to downloading a single large JavaScript file will only result in locking the browser out for a long period
of time, despite it being just one HTTP request. To get around this situation, you need to incrementally add more

JavaScript to the page in a way that doesn't block the browser.

JavaScript {5] F-BH 230 Yo 2% SELELbHREFE, U HTTP 38 SRR SRR, 30 1 R 3 1 1) d5e 4 2 1
R, fR%F JavaScript SCAFRE/N, FFRREI HTTP 5K Ea, UG s B i) 9 3 FH I 3 — 20 .
— AN RIS DIReR 2%, BT 2L JavaScript A BB, AREFIRAD RN AN SR PR, R
B NEA K JavaScript SCHF R AE I HTTP 4K, A28 B0 W W — R BUN). E X prisol,
B) U TR IR DS N JavaScript, FEAPRERE BN S PHZE N D AS o

The secret to nonblocking scripts is to load the JavaScript source code after the page has finished loading. In
technical terms, this means downloading the code after the window's load event has been fired. There are a few

techniques for achieving this result.

ARBHIE A AL AE T, S5 DU SE N2)5, 152K JavaScript #f5. WEARMBEY, X RKELE
window (1] load FF 5 2 Ja T4 A . A7) URF 59 AT BLSEBLIX R AR .

Deferred Scripts ZEH 4

HTML 4 defines an additional attribute for the <script> tag called defer. The defer attribute indicates that the
script contained within the element is not going to modify the DOM and therefore execution can be safely
deferred until a later point in time. The defer attribute is supported only in Internet Explorer 4+ and Firefox 3.5+,
making it less than ideal for a generic cross-browser solution. In other browsers, the defer attribute is simply
ignored and so the <script> tag is treated in the default (blocking) manner. Still, this solution is useful if your
target browsers support it. The following is an example usage:

<script type="text/javascript" src="filel.js" defer></script>

A <script> tag with defer may be placed anywhere in the document. The JavaScript file will begin downloading at
the point that the <script> tag is parsed, but the code will not be executed until the DOM has been completely
loaded (before the onload event handler is called). When a deferred JavaScript file is downloaded, it doesn't block

the browser's other processes, and so these files can be downloaded in parallel with others on the page.

HTML 4 Jy<script>Fr% e X T — AN R EIE: defer. iX defer JBFEIRH T & h T AL & IIMIAARIT 5145
2 DOM, A IACHS o] ARG 44T defer J& 1 H g Internet Explorer 4 A1 Firefox 3.5 B i M5 AR 300 U 2 i
B, EAE A AR P S A AR T o E LRSS [, defer JEPER MK, <scripthr% i JRERIN 7
FPACH GERRPILIE) ot i S % SCRFIAE, X P VR — P IR T % Bl .

<script type="text/javascript" src="filel.js" defer></script>

—/Ni A defer J& T HI<script>Fr 28 1] DUBCE A SCRI AT A7 E o X [¥) JavaScript SO AE<script>H# fif BT
IRz M B ANSHERAT, 2 DOM #SE (£ onload FHAF AR ZHI) o 244> defer
[JavaScript SCEFRE BRI, EAN S B ZE 0 W A% O T LA AR IR R, BUIZ S SO RT Ly B i A B s
EIFAT N

Any <script> element marked with defer will not execute until after the DOM has been completely loaded; this
holds true for inline scripts as well as for external script files. The following simple page demonstrates how the

defer attribute alters the behavior of scripts:

FEATAT A defer J& PEf<script>J0 5 AE DOM I SE B BT A BT, AN IS IR IIAS IS 2 AR BAIAS SC
fF, R T 5 RE7R T defer J& MW SE M AT 4 -
<htmI>
<head>
<title>Script Defer Example</title>
</head>
<body>
<script defer>
alert(*'defer");
</script>

<script>

alert(*'script™);
</script>
<script>
window.onload = function(){
alert(*'load");
k
</script>
</body>
</html>
This code displays three alerts as the page is being processed. In browsers that don't
support defer, the order of the alerts is “defer”, “script”, and “load”. In browsers that
support defer, the order of the alerts is “script”, “defer”, and “load”. Note that the
deferred <script> element isn't executed until after the second but is executed before

the onload event handler is called.

XA 7 BT I AL B AR o = AN TR . R S R AN SCHY defer JEPE, IS B H 6 T A RO &
“defer”, “script”Fl“load”. 4L WE#% I HF defer J@PE, TS24 5 H X TEAE I A& “script”, “defer”F1“load” .
R ARIEA defer [F<script>T0 3R A RIS —ANSIMIIZAT, MJ21E onload FAF AR AL B2 Fir gk 8 H

If your target browsers include only Internet Explorer and Firefox 3.5, then deferring scripts in this manner can
be helpful. If you have a larger cross-section of browsers to support, there are other solutions that work in a more
consistent manner.

TR H AR 50 2% H AL HE Internet Explorer £ Firefox 3.5, A4 defer BIAHSZ A H o 0 AR T 22 3 45

i U 22 M B s, IS A B A B B ST 3

Dynamic Script Elements Z)Z&BIA TG HR

The Document Object Model (DOM) allows you to dynamically create almost any part of an HTML
document using JavaScript. At its root, the <script> element isn't any different than any other element on a page:
references can be retrieved through the DOM, and they can be moved, removed from the document, and even

created. A new <script> element can be created very easily using standard DOM methods:

SCRYX SR (DOMD SR VAR AL JavaScript 2261 HTML (1) LT 425 S0) 7% - AR ALE T, <script>
JCEG A G R B AR 5IHZ R LUED DOM #H7R%, T NSO s, kR, T
Dy, —MFi<script>7C 3 AT LA 25 5 Ml 1 AR v DOM b 461 42 -
var script = document.createElement ("script");
script.type = "text/javascript";
script.src = "filel js";

document.getElementsByTagName r("head")[0].appendChild(script);

This new <script> element loads the source file filel.js. The file begins downloading as soon as the element is
added to the page. The important thing about this technique is that the file is downloaded and executed without
blocking other page processes, regardless of where the download is initiated. You can even place this code in the
<head> of a document without affecting the rest of the page (aside from the one HTTP connection that is used to

download the file).

W iR<script>JC 3 ML filel js YA o HEICAF 2 T0 RIS I T2 5 SEZITTA6 N 3. HEBOR M G7E T
TRTERTAL) T8, SO N RS AT #EAN S PHZESLAD T AR I AR o AREE 28 1T LRI S8R 5
<head> 73 A2 TEAR B3 (K T AU 2 g (R 1 R T R8O HTTP %3 .

When a file is downloaded using a dynamic script node, the retrieved code is typically executed immediately
(except in Firefox and Opera, which will wait until any previous dynamic script nodes have executed). This works
well when the script is self-executing but can be problematic if the code contains only interfaces to be used by
other scripts on the page. In that case, you need to track when the code has been fully downloaded and is ready for

use. This is accomplished using events that are fired by the dynamic <script> node.

2SS P B A BT SR 8N, 3R AR AR A 5 S RIHRAT (KR T Firefox Al Opera, A1 144 45 455 I i 1)
PSS A (AT 58) o AR Bia BRI IX LT IEH, (HR W R A R 5 ALt

FCARBAAC R HTR A R 1, W2 ok i)l e SXRRE DL N, AR ZEEREAIA 85 SO HER 238 11 DL, W]
LU 2h A <script>11 s A H SHAHAS BIAOGAE B

Firefox, Opera, Chrome, and Safari 3+ all fire a load event when the src of a <script> element has been

retrieved. You can therefore be notified when the script is ready by listening for this event:

Firefox, Opera, Chorme Fll Safari 3+2 7E<script>"17 LU SE 2 G K&t — load Fif. RAT LMW IX—
A, DA B A HE 28 L 1 0 0 -

var script = document.createElement ("script")
script.type = "text/javascript";
//Firefox, Opera, Chrome, Safari 3+
script.onload = function(){

alert("Script loaded!");
I8
script.src = "filel.js";

document.getElementsByTagName r("head")[0].appendChild(script);

Internet Explorer supports an alternate implementation that fires a readystatechange event. There is a
readyState property on the <script> element that is changed at various times during the download of an external

file. There are five possible values for readyState:

Internet Explorer SCH 55— FscBl =, & &t readystatechange Z{} . <script>JLHE A > readyState

JEE, e EREE N SNBSS R AR . readyState A FLAPEAA :
"uninitialized" The default state

“uninitialized”ER YIRS

"loading" Download has begun

“loading” F 845

"loaded" Download has completed

“loaded” N Z 52K

"interactive" Data is completely downloaded but isn't fully available

“interactive” 2 5¢ BfH A AT H

"complete" All data is ready to be used

“complete” I Fidls DA HE & 1

Microsoft's documentation for readyState and each of the possible values seems to indicate that not all states
will be used during the lifetime of the <script> element, but there is no indication as to which will always be used.
In practice, the two states of most interest are "loaded" and "complete". Internet Explorer is inconsistent with
which of these two readyState values indicates the final state, as sometimes the <script> element will reach the
"loaded" state but never reach "complete" whereas other times "complete" will be reached without "loaded" ever
having been used. The safest way to use the readystatechange event is to check for both of these states and remove

the event handler when either one occurs (to ensure the event isn't handled twice):

PERSCHS B, fE<script>JCaR [/ A I, readyState FREXSEIUEA & A F L, (HIFBA R U
SCEEL M g B S, FRATT O ERP) E “loaded” Fll“complete™ R &5 . Internet Explorer X 1X >
readyState {H T & 8 I ZARS I8, A7 I <script>7C 2213 31 “loader” Hl WA Hi B “complete”, {H %34+
— LI5S N I “complete” M AN E “loaded”. £ % 4% [I MF AL AL readystatechange = {4 S 71X P FRik
A, JFE SR —FOR AU, MHER readystatechange FAF ARG (JRAEFAFASHAL LK) -
var script = document.createElement ("script")
script.type = "text/javascript";

//Internet Explorer
script.onreadystatechange = function() {
if (script.readyState == "loaded" || script.readyState == "complete"){
script.onreadystatechange = null;
alert("Script loaded.");
}
I8
script.src = "filel.js";
document.getElementsByTagName r("head")[0].appendChild(script);
In most cases, you'll want to use a single approach to dynamically load JavaScript files. The following function

encapsulates both the standard and IE-specific functionality:

REHAEOUT, A I —A R 0 vT LLSEIL JavaScript SCPFIIZNA AL, T R s 38 T bR sk

YURT TE S DL i I DI g -

function loadScript(url, callback){
var script = document.createElement ("script")
script.type = "text/javascript";
if (script.readyState){ //IE
script.onreadystatechange = function(){
if (script.readyState == "loaded" || script.readyState == "complete"){
script.onreadystatechange = null;
callback();
}
15
} else { //Others
script.onload = function(){
callback();
}5
H
script.src = url;

document.getElementsByTagName r("head")[0].appendChild(script);

This function accepts two arguments: the URL of the JavaScript file to retrieve and a callback function to
execute when the JavaScript has been fully loaded. Feature detection is used to determine which event handler
should monitor the script's progress. The last step is to assign the src property and add the <script> element to the

page. The loadScript() function is used as follows:

UL R E A28 JavaScript SCAFIF URL, M1/ JavaScript #5e il & (14 121 d £ 8 bk
R T yhoe WAl itk Jen—2b, CE sre JETE, FERi<script>TCHRIR A T . 1 loadScript() M 4K
A3 59 R
loadScript("filel.js", function(){

alert("File is loaded!");

s

You can dynamically load as many JavaScript files as necessary on a page, but make sure you consider the
order in which files must be loaded. Of all the major browsers, only Firefox and Opera guarantee that the order of
script execution will remain the same as you specify. Other browsers will download and execute the various code
files in the order in which they are returned from the server. You can guarantee the order by chaining the

downloads together, such as:

PRn] DAAE SR P B A I 25AR 2 JavaScript SCPF, B, WSS A ANCRUE ST IR . Jr 3230
Wds 2, JUf Firefox H1 Opera DRIEJAIA$2 RS & B RAT o FLA DN ST R5 A 12 TR 95 @ 3 B & ATT AR I
Fe R BIFBAT AR AR SO -] DURE T Bt/ E 8 IIAE — ke LR IEABAT T 20, F e
loadScript("file1.js", function(){
loadScript("file2 js", function(){

loadScript("file3.js", function(){

alert("All files are loaded!");

s
s
s

This code waits to begin loading file2.js until filel.js is available and also waits to download file3.js until
file2.js is available. Though possible, this approach can get a little bit difficult to manage if there are multiple files

to download and execute.

BEARES 24 filel js W2 5 A4 TFUA AR file2 js, 25 file2.js 2 J5 A TFUA AR file3 jso EARI i wT
17, (HAURE FEMPATRISCIHR S, A LSRR

If the order of multiple files is important, the preferred approach is to concatenate the files into a single file
where each part is in the correct order. That single file can then be downloaded to retrieve all of the code at once

(since this is happening asynchronously, there's no penalty for having a larger file).

WER A SRR o> B, B M g TSSO R A R O JE R e — A SO o A7 SR]
PA— IR PE R 3T AR (Tt e B AT I, ARSI B A8k .
Dynamic script loading is the most frequently used pattern for nonblocking JavaScript downloads due to its

cross-browser compatibility and ease of use.

BNAS A INZ R AEFH ZE JavaScript &b i ORI, RO & nT A S s, i HE 52 1
XMLHttpRequest Script Injection XHR BIAEA

Another approach to nonblocking scripts is to retrieve the JavaScript code using an XMLHttpRequest (XHR)
object and then inject the script into the page. This technique involves creating an XHR object, downloading the
JavaScript file, then injecting the JavaScript code into the page using a dynamic <script> element. Here's a simple

example:

T3 AN LAAEBH 2 77 XERAF BIAS 1 75 7224 XMLHttpRequest(XHR)XS G5 A E N B T . bR
HALAE > XHR X%, SRJ5 N2 JavaScript 3XfF, #5 H— A8l <script>J0 54 JavaScript fURH AT
(LTI NI o TR NS LB R

var xhr = new XMLHttpRequest();
xhr.open("get", "filel.js", true);
xhr.onreadystatechange = function() {
if (xhr.readyState == 4){
if (xhr.status >= 200 && xhr.status < 300 || xhr.status == 304){
var script = document.createElement ("script");
script.type = "text/javascript";
script.text = xhr.responseText;
document.body.appendChild(script);
H
}
I8

xhr.send(null);

This code sends a GET request for the file filel.js. The onreadystatechange event handler checks for a
readyState of 4 and then verifies that the HTTP status code is valid (anything in the 200 range means a valid
response, and 304 means a cached response). If a valid response has been received, then a new <script> element is

created and its text property is assigned to the responseText received from the server. Doing so essentially creates

a <script> element with inline code. Once the new <script> element is added to the document, the code is

executed and is ready to use.

LEACAS [JIR 55 4% A% — AN FRI filel js SCAF¥) GET 15K - onreadystatechange 4k P pf £ 6 & readyState
JEAIE 4, RERA HTTP RS ZEA AR QXX RRA MBI, 304 FR—NEAEWRD o W
BT AHEBN, B AEIEE - ASFT I <script>TuE, BT I SCAS R P BCE) MR S5 s Y
responseText 74T i o IXAFMSL R 23 BUEE — iy A N IBA U R <script>TG 3 . — H ¥i<script>JC R 44N £

SCRS, AR AT, IFHES AT

The primary advantage of this approach is that you can download the JavaScript code without executing it
immediately. Since the code is being returned outside of a <script> tag, it won't automatically be executed upon
download, allowing you to defer its execution until you're ready. Another advantage is that the same code works

in all modern browsers without exception cases.

XTI AR A, AR AT BL R 8O SZ B AT 1) JavaScript AU o 1 TARURL IR M1 <script>h525 2 b (4t
AT B <script>ARZAAD B NEREAS AT, XK LAEIRAT, BRI UIEHES A T .
g3 MR RFERACHEAE BT A DA e 28 A AN 2 5 1R 5

The primary limitation of this approach is that the JavaScript file must be located on the same domain as the
page requesting it, which makes downloading from CDNs impossible. For this reason, XHR script injection

typically isn't used on large-scale web applications.

W7 d B BRI« JavaScript SO 2005 TUIRITBCE AE [R]— ANy, ANBEM CDNs R4 (CDN $5“I
FRPE 2% (Content Delivery Network) ”, HiIH 002 s (SALHIAY) — 422D o IER XA R, KA
P U AN K XHR AR A AR .

Recommended Nonblocking Pattern % 1JEFH 2245,

The recommend approach to loading a significant amount of JavaScript onto a page is a two-step process: first,
include the code necessary to dynamically load JavaScript, and then load the rest of the JavaScript code needed

for page initialization. Since the first part of the code is as small as possible, potentially containing just the

loadScript() function, it downloads and executes quickly, and so shouldn't cause much interference with the page.

Once the initial code is in place, use it to load the remaining JavaScript. For example:

HEFE I 1) UL 1R N 4K = JavaScript [51593 AP R 5B—00, B8 812 N4k JavaScript It 75 14X,
SR G INER DT AT UG A T 75 1R % JavaScript Z MR 4> o IXERMCIE L &/, ATRE AL loadScript() R £,
B RS AT IR G, A2 T IE AR KT MRS HE & Ur 2)5, e RN 3R 1 JavaScript.
il 4n .

<script type="text/javascript" src="loader.js"></script>
<script type="text/javascript">
loadScript("the-rest.js", function(){
Application.init();
});

</script>

Place this loading code just before the closing </body> tag. Doing so has several benefits. First, as discussed
earlier, this ensures that JavaScript execution won't prevent the rest of the page from being displayed. Second,
when the second JavaScript file has finished downloading, all of the DOM necessary for the application has been
created and is ready to be interacted with, avoiding the need to check for another event (such as window.onload)

to know when the page is ready for initialization.

R BACRS TR EAE body 19K HIFRAE</body>Z il XA JLRILFAL: E2G, RATHS R RIAREE, IXHE
MU £ JavaScript 3847 AN2 5% W0 I FAD 7 Whos o FLK, 258 8y JavaScript SCPFSERC NG P v
FEFF BT 2K DOM B2 QUEEEF 1, FF M w0y 1n) (A%, 6t S 8 RS M) 40 22 (491 41 window.onload)
SRAFER U 7 iR I T

Another option is to embed the loadScript() function directly into the page, thus avoiding another HTTP

request. For example:

I3 NIEFE FARH loadScript()pA AR AAE BT, 3K 0T LU oI HTTP 353K Bl

<script type="text/javascript">
function loadScript(url, callback){
var script = document.createElement ("script")
script.type = "text/javascript";
if (script.readyState){ //IE
script.onreadystatechange = function(){
if (script.readyState == "loaded" ||
script.readyState == "complete"){
script.onreadystatechange = null;
callback();
H
15
} else { //Others
script.onload = function(){
callback();
¥
H
script.src = url;
document.getElementsByTagName r("head")[0].appendChild(script);
H
loadScript("the-rest.js", function(){
Application.init();
1

</script>

If you decide to take the latter approach, it's recommended to minify the initial script using a tool such as YUI

Compressor (see Chapter 9) for the smallest byte-size impact on your page.

R A X AP, 3 URAE] <Y UT Compressor”(Z ILEF 9 F2)al & AL T HOBE AT i A0 A 4

ANF N R

Once the code for page initialization has been completely downloaded, you are free to continue using

loadScript() to load additional functionality onto the page as needed.

— HLGUHAIIR A ARRS R B 5 i, it i LA loadScript() B 200N 28 51t T i A58 L i bR 2

The YUI 3 approach

The concept of a small initial amount of code on the page followed by downloading additional functionality is

at the core of the YUI 3 design. To use YUI 3 on your page, begin by including the YUI seed file:

YUI 3 (A% EES e H— MRANIRIIGAS, A Thae . e v LA YUl 3, &
Sty YUT 130 qt:

<script type="text/javascript"

src=http://yui.yahooapis.com/combo?3.0.0/build/yui/yui-min.js></script>

The seed file is around 10 KB (6 KB gzipped) and includes enough functionality to download any other YUI
components from the Yahoo! CDN. For example, if you'd like to use the DOM utility, you specify its name

("dom") with the YUI use() method and then provide a callback that will be executed when the code is ready:

A7 30 KRZ) 10KB (gzipped Ha4i 5 6KB) 37 M Yahoo! CDN N YUI 441 Frifi 2% Thig. 2¢
B, WERRALE T DOM Dhfg, RATLURHE 47 ("dom™) , %164y YUI) use(%L, FH&HE—
ANEI BRE ARSI AN [R 508 5 1 P -

YUI().use("dom", function(Y){

Y.DOM.addClass(docment.body, "loaded");

s

This example creates a new instance of the YUI object and then calls the use() method. The seed file has all of
the information about filenames and dependencies, so specifying "dom" actually builds up a combo-handler URL
with all of the correct dependency files and creates a dynamic script element to download and execute those files.
When all of the code is available, the callback method is called and the YUTI instance is passed in as the argument,

allowing you to immediately start using the newly downloaded functionality.

O

A FAUE T —ASHT I YU SCH, 28R use(pR 2.l SCPEIIAT G T 302 RIS R N BT A
FOE, ITLARE “dom™SKBn FH L T AN HIE R ST P 4L KBk 5 f " URL, JF 81— sh
ATER N HIATR LA A AT I, R R BRER, YUL SEBRRAE 0 S8t N, AR
S RIMERDET T 3 Thae .

The LazyLoad library

For a more general-purpose tool, Ryan Grove of Yahoo! Search created the LazyLoad library (available at
http://github.com/rgrove/lazyload/). LazylLoad is a more powerful version of the loadScript() function. When

minified, the LazyLoad file is around 1.5 KB (minified, not gzipped). Example usage:

YER—AFEE) T, Yahoo! Search 1] Ryan Grove 7 T LazyLoad J& (&L
http://github.com/rgrove/lazyload/) . LazyLoad f&—/> ¥ 54 K1) loadScript() B %1 . LazyLoad ¥4 J5 2 A K

2 1.5KB 4, MiAZEH gzip R4iD o HEZAHILE:

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">
LazyLoad.js("the-rest.js", function(){
Application.init();
1);

</script>

LazyLoad is also capable of downloading multiple JavaScript files and ensuring that they are executed in the
correct order in all browsers. To load multiple JavaScript files, just pass an array of URLs to the LazyLoad.js()

method:

LazyLoad &7 LU R 32> JavaScript SCAF, FFORUEEATTAE T A M T as B ABRENS 12 IOE# AU AT . 22

In#E 2 A~ JavaScript 01, HELFH LazyLoad js() s E0FA%8— 4> URL BAFI45E

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">

LazyLoad.js(["first-file.js", "the-rest.js"], function(){

admin
附注

Application.init();

s

</script>

Even though the files are downloaded in a nonblocking fashion using dynamic script loading, it's
recommended to have as few files as possible. Each download is still a separate HTTP request, and the callback

function won't execute until all of the files have been downloaded and executed.

BRI 2SO AR AN ARBLZE 7 AN G SIS A N A, e BN AT RE D SO B o BRI 20T
SRR HTTP 355K, [e& SCELBI P A SO R 3O T 56 2 e 4 &1817

The LABjs library

Another take on nonblocking JavaScript loading is LABjs (http://labjs.com/), an open source library written by
Kyle Simpson with input from Steve Souders. This library provides more fine-grained control over the loading
process and tries to download as much code in parallel as possible. LAB;js is also quite small, 4.5 KB (minified,

not gzipped), and so has a minimal page footprint. Example usage:

J—/EFHZE JavaScript M2 % & LABjs C(http://labjs.com/) , Kyle Simpson 5 #]—/NMFJZ, H Steve
Souders FEH)y o MR NG FEREAT SRS AR I, IR O0FAT P RS WREZ AUS . LABjs AR/, H
H 4.50KB CKi4i, AR gzip B4i) BT ARAT /MO GUE AR R V284 -

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
$LAB.script("the-rest.js")
.wait(function(){
Application.init();
1)

</script>

The SLAB.script() method is used to define a JavaScript file to download, whereas $SLAB.wait() is used to

indicate that execution should wait until the file is downloaded and executed before running the given function.

LABjs encourages chaining, so every method returns a reference to the SLAB object. To download multiple

JavaScript files, just chain another SLAB.script() call:

SLAB.script()BA ZUH T F % JavaScript 3CF, SLAB.waitOREH T4 H— A%, R B
TNERGEMOITIEAT Z G A S . LABjs SR EEERAE, BN BREOR BN 18 SLAB SR 51 H . 2R 4
Z A~ JavaScript XA, A EEN T —ANSLAB.scriptOH, 4175

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
$LAB.script("first-file.js")
.script("the-rest.js")
wait(function(){
Application.init();
P

</script>

What sets LABjs apart is its ability to manage dependencies. Normal inclusion with <script> tags means that
each file is downloaded (either sequentially or in parallel, as mentioned previously) and then executed

sequentially. In some cases this is truly necessary, but in others it is not.

LABjs [FlURF 2 ALFE T E WS A BOOC R o BOR Ul <script>ARr B IR R ST 3 (BE%ifye ,
BT, WHTHTR) RGBT HAT . AERELERE I R IX AR B, AR

LAB;js allows you to specify which files should wait for others by using wait(). In the previous example, the
code in first-file.js is not guaranteed to execute before the code in the-rest.js. To guarantee this, you must add a

wait() call after the first script():

LABjs i3 wait()p& £ SR VF1R$ € MR LE SCPF I AZ S A Hofh SO o AERTHIN] 7~ first-file js I CAS AR

UETE the-rest.js ZHIIETT o AMRUEIX— 81, RIS — script() B G I—A™ wait() 1 :

<script type="text/javascript" src="lab.js"></script>

<script type="text/javascript">

$LAB.script("first-file.js").wait()
.script("the-rest.js")
wait(function(){
Application.init();
1)

</script>

Now the code in first-file.js is guaranteed to execute before the code in the-rest.js, although the contents of the

files are downloaded in parallel.
WAL, first-file js AR ORUESSTE the-restjs ZHTHAT, EARPIA SCAFI N A2 TFAT R0
Summary M4

Managing JavaScript in the browser is tricky because code execution blocks other browser processes such as
UI painting. Every time a <script> tag is encountered, the page must stop and wait for the code to download (if
external) and execute before continuing to process the rest of the page. There are, however, several ways to

minimize the performance impact of JavaScript:

BRI Y 4 (¥ JavaScript AR 2N BRT I L, DRUON AR AT B ZE T AN S R AL PR AR, 1 Wi
izl BRI B <script>FraE, TURAIE FARFERAUS T H CRZIMNBID JFAT,)5 R4k it
BT AR 7> o (HoE, A LR 5% n] LU TavaScript 3L BE 50 -

* Put all <script> tags at the bottom of the page, just inside of the closing </body> tag. This ensures that the page

can be almost completely rendered before script execution begins.

K BTy <script>hr 8 EUEAE DU AR AR, 25 body KMAIARZE</body>] 7 o IR T LAGRALE BT i 75 JAIA

IBAT Z 58 BT o

* Group scripts together. The fewer <script> tags on the page, the faster the page can be loaded and become

interactive. This holds true both for <script> tags loading external JavaScript files and those with inline code.

RRAA AT . TR <script>FRa8l/b, BT Y INA0de Bt , i b th SN . AN AR IIAS
SR RS AR 2 it

* There are several ways to download JavaScript in a nonblocking fashion:
— Use the defer attribute of the <script> tag (Internet Explorer and Firefox 3.5+ only)
— Dynamically create <script> elements to download and execute the code

— Download the JavaScript code using an XHR object, and then inject the code into the page

A JURH 53] A T ARERH 26 77 52X T ¢ JavaScript:

—— N <script>FrZEAN AN defer J&PE (JLIG AT Internet Explorer A Firefox 3.5 BA R4

Fati<script>ruEg, H'E FEIFHATUS
—— I XHR X T #AhS, e A2 i

By using these strategies, you can greatly improve the perceived performance of a web application that

requires a large amount of JavaScript code.

AL H] iR Sems, i n] DA HR IS L8 AR] JavaScript AGHS 1) 9 G0 I FR S BR PE E

58— Data Access Z(HEVTA)

One of the classic computer science problems is determining where data should be stored for optimal reading
and writing. Where data is stored is related to how quickly it can be retrieved during code execution. This problem
in JavaScript is somewhat simplified because of the small number of options for data storage. Similar to other
languages, though, where data is stored can greatly affect how quickly it can be accessed later. There are four

basic places from which data can be accessed in JavaScript:

2 MAT SHUREE I A) EUZ A E B B 4 A7 AT A)5, DLSEBL R HE IR 5 2808 o Ba A7 At /e AL
RAFRADIZAT WIS A R BT E . 75 JavaScript 1, i) AR &7 B2, D54 dli 476 A > 7
ATk e IR F R, B AL E R AR B VT R E L . £E JavaScript HAT DU R LA 1) Hodfa 1 1)
(A

Literal values H %1
Any value that represents just itself and isn't stored in a particular location. JavaScript can represent strings,
numbers, Booleans, objects, arrays, functions, regular expressions, and the special values null and undefined as

literals.

RO A D, TR/ TAF R . JavaSeript BB IR: A5, 407, MR H%,
AL R EMA, AT R, bR E X

Variables 7%

Any developer-defined location for storing data created by using the var keyword.

RN G var KCHE 7 B TA7 il A L

Array items £(4110

A numerically indexed location within a JavaScript Array object.

AT RG], ArE— JavaScript 20205

Object members %f % %, i1

A string-indexed location within a JavaScript object.

BAFRHREG], fefl— JavaScript X%,

Each of these data storage locations has a particular cost associated with reading and writing operations
involving the data. In most cases, the performance difference between accessing information from a literal value
versus a local variable is trivial. Accessing information from array items and object members is more expensive,
though exactly which is more expensive depends heavily on the browser. Figure 2-1 shows the relative speed of

accessing 200,000 values from each of these four locations in various browsers.

P B A AL AR ARE MBS IRAE T RZEUEDL N, XA EEEN AR A R H U
] (R PE REZE S AN AR T 1Y) o U I SO TR B B3 AR 2 v — 2%, Bk 220, AROCRE I AT
Ao B 2-1 s TANERM ST A, 23 e DU R A SR REA T 200°000 SR AE B FH R 1]

Older browsers using more traditional JavaScript engines, such as Firefox 3, Internet Explorer, and Safari 3.2,
show a much larger amount of time taken to access values versus browsers that use optimizing JavaScript engines.
The general trends, however, remain the same across all browsers: literal value and local variable access tend to
be faster than array item and object member access. The one exception, Firefox 3, optimized array item access to
be much faster. Even so, the general advice is to use literal values and local variables whenever possible and limit
use of array items and object members where speed of execution is a concern. To that end, there are several

patterns to look for, avoid, and optimize in your code.

& BB Ve g A AL S0 1) JavaScript 51%, 1 Firefox 3, Internet Explorer £l Safari 3.2, ‘eI 1LLALik)5
(¥ JavaScript 71 SEFES N2 I 1] o BATRIDRTGE, o Rl S22 (K o P2 2 BT B TURIRS 5k 5% 17
EE . HAT—AMISL, Firefox 3, ORI ELZ1I5) B LAAE S PR . BRAE0l, — M0, WAoo
BATHE, M2 BRI i i, BRI A RN S B A . it AU Bk A
EG I RAL PRI AT

100 ~
90
80 4
0 4
&0 4
0 4
40
0 4
0 4
10 4

Time {ms) per 200,000 reads

wﬁﬁff*@ &

| O tieral [Local variable .mmm .uqmmmer|

Figure 2-1. Time per 200,000 reads from various data locations

2-1 NEAFEIEHE SR ASHEAT 200000 REEEAE BT H 1 i) 1]

Managing Scope ‘& H 4 FH 1

The concept of scope is key to understanding JavaScript not just from a performance perspective, but also
from a functional perspective. Scope has many effects in JavaScript, from determining what variables a function
can access to assigning the value of this. There are also performance considerations when dealing with JavaScript

scopes, but to understand how speed relates to scope, it's necessary to understand exactly how scope works.

P& I BEA JavaScript HOCHE, AMUAPERERIAMIE, T HNIIRERI ML AETIBRT JavaScript 47
VEZ 50, M€ WELE At m] LA s B s i), 20 5E this IR{EL. JavaScript /F st ¢ R 2IERE, (HJE 2
i L A RIRI SC 2R, S B BR AR A sk) A i P

Scope Chains and Identifier Resolution 4k F & MIFR IR FFMEHT

Every function in JavaScript is represented as an object—more specifically, as an instance of Function.
Function objects have properties just like any other object, and these include both the properties that you can
access programmatically and a series of internal properties that are used by the JavaScript engine but are not

accessible through code. One of these properties is [[Scope]], as defined by ECMA-262, Third Edition.

B> JavaScript BRECHBR R A XSG B0 U, BRI RO SR E AR OISR,
P VR AT A R s 0] 1S e, A0 RAIARBERRE U, AL JavaScript SIEEAE A @ Pt Hop—A

A JE P S [[Scope]], HI ECMA-262 ArHES =g o

The internal [[Scope]] property contains a collection of objects representing the scope in which the function
was created. This collection is called the function's scope chain and it determines the data that a function can
access. Each object in the function's scope chain is called a variable object, and each of these contains entries for
variables in the form of key-value pairs. When a function is created, its scope chain is populated with objects
representing the data that is accessible in the scope in which the function was created. For example, consider the

following global function:

W HB[[Scope] i P & — > s A G EE MV E TIPS SN EE o UER S RPN R BV T e, & ke
WR LK nT e KR) o O R S Y B PP (KRR A X AR AT AR B, RS) AR SR LB

AR B EId e, RSB ETE DIR 5, IX R S A QR Gl s R E K PR 5 v)) 1)
I . N XA 4) R 4L

function add(num1, num?2){
var sum = numl + num2;

return sum;

When the add() function is created, its scope chain is populated with a single variable object: the global object
representing all of the variables that are globally defined. This global object contains entries for window,
navigator, and document, to name a few. Figure 2-2 shows this relationship (note the global object in this figure

shows only a few of the global variables as an example; there are many others).

M addO PRI S, 8 MAE T EEE TP I AN SO AT AR 5, A R BAR T T AR e L E
AR, SR SRS WA L JER SR 2RIV 3 O [22 R ENTZ MR QER:
SRR b Y 4 R A R AR By, HARE IR IR

Add Scope chain Global object
g o~ o - e | wedow
window | iobject

decument | fotsect)
ad | ifuaction)

Figure 2-2. Scope chain for the add() function

2-2 add() BRI E Y AE H ek B

The add function's scope chain is later used when the function is executed. Suppose that the following code is

executed:

add BREUHAE TR S AE AT I I 2. BstiaqT T i A A 0hY .
var total = add(5, 10);

Executing the add function triggers the creation of an internal object called an execution context. An execution

context defines the environment in which a function is being executed. Each execution context is unique to one
particular execution of the function, and so multiple calls to the same function result in multiple execution

contexts being created. The execution context is destroyed once the function has been completely executed.

1T add BRI ST — DN ERS S, BRAEIBATI LR 30, —ANsAT LR 08 T AN R s AT
IS X RREUN BRIOEAT I S, BT B R SCHOGE 1, BT b2 R R A ek ot & 3 802 Ik
QIIZATI LR 3. MR BT S8 e, 18T R SO B

An execution context has its own scope chain that is used for identifier resolution. When the execution context
is created, its scope chain is initialized with the objects contained in the executing function's [[Scope]] property.
These values are copied over into the execution context scope chain in the order in which they appear in the
function. Once this is complete, a new object called the activation object is created for the execution context. The
activation object acts as the variable object for this execution and contains entries for all local variables, named
arguments, the arguments collection, and this. This object is then pushed to the front of the scope chain. When the
execution context is destroyed, so is the activation object. Figure 2-3 shows the execution context and its scope

chain for the previous example code.

—ANEATHLE R ICAE A SRR EEE, AR U T a4 TR SR BRI 4E E
Pigatl, JERNEAT R EIRI[[Scope] R E A TS IO 5o IX LB $2 B AT DUAE R AR IR, 4 2 1 2
IEATHIE R SCHE I o X IUTAE — HSE R, — MR AR i B (K8 Sl as AT 1 SCai
4T o BOEX A R BT AR B, WS VTR P R AL R, S, SRR, W this
M. AR5, SO BN HI SRR A S o 4 PSR R B, i b — [RS8 P 2-3 o
T TSR B Xk B (R AT H B SCRVE R4 Y

this window
acguements| [5,10]
w1 5
var Total = add(5, 10}; A’ 0
execution context swm | undefmed

Global abject

this | window
window | fabject)
documen | _{abpect
a1 | (wacion
total | undefined

Figure 2-3. Scope chain while executing add()

Kl 2-3 1247 add()i R4 T 4 e

Each time a variable is encountered during the function's execution, the process of identifier resolution takes
place to determine where to retrieve or store the data. During this process, the execution context's scope chain is
searched for an identifier with the same name. The search begins at the front of the scope chain, in the execution
function's activation object. If found, the variable with the specified identifier is used; if not, the search continues
on to the next object in the scope chain. This process continues until either the identifier is found or there are no
more variable objects to search, in which case the identifier is deemed to be undefined. The same approach is
taken for each identifier found during the function execution, so in the previous example, this would happen for

sum, numl, and num?2. It is this search process that affects performance.

FERRBCEAT IR, REE BN, bR RF U IR 2 g IR HLSRAG B8 A7 il St . I RIS
AT S A R, BRI A AORRIRAT o R A M AT e B H bn 2 A P R i m T am .
RIEN T, W2 XA BAT R R AT INAZ s ARk, R TARREREAAE HIEEER) X5
VO FEFFEEIEAT, HERR TR R, B BT E 2 SOl TR, RSO0 M AR IRARRE BN 2 R E
Mo BREOAT IR R PR EE D X R R R, i 1 5, s iR) sum, numl, num2
I A AR IR R R . IR XA R R SR T R

Identifier Resolution Performance ¥RiRAFRBITEEE

Identifier resolution isn't free, as in fact no computer operation really is without some sort of performance
overhead. The deeper into the execution context's scope chain an identifier exists, the slower it is to access for
both reads and writes. Consequently, local variables are always the fastest to access inside of a function, whereas
global variables will generally be the slowest (optimizing JavaScript engines are capable of tuning this in certain
situations). Keep in mind that global variables always exist in the last variable object of the execution context's
scope chain, so they are always the furthest away to resolve. Figures 2-4 and 2-5 show the speed of identifier

resolution based on their depth in the scope chain. A depth of 1 indicates a local variable.

PRRFFUIANE o 28 (1, 852 B0 W RUIK R AT DA A PR RETT A » 23 AT 3] B R SO Pk v
AR P AL AL BB, R I RS . P, RO R AR A U) TR R B bR, T4
JRAR R R R) (UEALIY JavaScript SIEEAERCLE R L0 T AT LLSCRIXMUIR D) o WicdE, AJRARa st
A F3EAT I SOV RSB I B e AN, BT AR R o A e & 1K) B 2-4 A1 2-5 o 14 skt 1

AR BERR AT PR, WREEA 1 Fon— AN R

Time (ms) per 200,000 writes

='.:1_:.,_.“....-..- srgRId ::'

Identifier depth
=~ Fiefon 3 =@ Internet Explorer 8
=m= Firefon 3.5 Opera 9.64
~m- (hrome 1 =m= (pera 10 Beta
== (hrome 2 ~o= Safari 1.2

=m= [ntemet Explorer 7 -== Safani 4

Figure 2-4. Identifier resolution for write operations

Kl 2-4 HEARRIFRIRTT I

0

180
160 4
'§ 140 4
%lm
o 100
a
E
E 60+
=
40
b [e : o :
pasandlisssraansen £ LITEERTTEE TEPTTTTTTT TETTTPETTTY |
'}‘_* T - T - T - - T - 1
1 2 3 4 5 b
Identifier depth
=m- Firefox 3 =@ [ntemnet Explorer §
==~ Firefox 3.5 (hpeera 9,64
~u= Chrome 1 =m= (Jpera 10 Beta
=== (hrome } —o— Safari 3.2
=& Internet Exploser 7 —s— Safari4

Figure 2-5. Identifier resolution for read operations

25 BEBRAEHRR SR

The general trend across all browsers is that the deeper into the scope chain an identifier exists, the slower it
will be read from or written to. Browsers with optimizing JavaScript engines, such as Chrome and Safari 4, don't
have this sort of performance penalty for accessing out-of-scope identifiers, whereas Internet Explorer, Safari 3.2,
and others show a more drastic effect. It's worth noting that earlier browsers, such as Internet Explorer 6 and
Firefox 2, had incredibly steep slopes and would not even appear within the bounds of this graph at the high point

if their data had been included.

SRS, PR R RUL, MR IR T A A B YR, S e R g . SR AL)
JavaScript 518X WE A%, Wl Safari 4, Ui A 3RAMRIARE I EAA X P PERESUK, 1 Internet Explorer, Safari 3.2,
FH A0 S WA ORI B R 52 o AEARE R A2, 3 Y48 40 Internet Explorer 6 1 Firefox 2, 4 A

AEULEAR (BEI R, W R A S e T8, 2 s nURE) EERIL 5

Given this information, it's advisable to use local variables whenever possible to improve performance in
browsers without optimizing JavaScript engines. A good rule of thumb is to always store out-of-scope values in

local variables if they are used more than once within a function. Consider the following example:

WA EAER, AEBCA AL JavaScript SIHE M s 1, B RO BEAE T R AR . — M2 g0 TR
st MR A A MG 2 AN AR A, W EAE R B H I 21—k I8 NI 5

function initUI(){
var bd = document.body,
links = document.getElementsByTagName r("a"),
i=0,

len = links.length;

while(i < len){
update(links[i++]);

H

document.getElementByld("go-btn").onclick = function(){
start();

¥

bd.className = "active";

This function contains three references to document, which is a global object. The search for this variable
must go all the way through the scope chain before finally being resolved in the global variable object. You can
mitigate the performance impact of repeated global variable access by first storing the reference in a local variable

and then using the local variable instead of the global. For example, the previous code can be rewritten as follows:

BRI T — /M%) document 151, document J&— /N4 it 5o AR AR &, DAZ00H) BEANE F 3kEE
HEE GRS R PR E . VRAT DR ek IR 7 vk E A 4 SR AR U AR PR RE IR s 1 ST
2 JR 2 w15 -G E— A R AR s, RS A R w2 R . Fln, i sy LR
B

function initUI(){
var doc = document,
bd = doc.body,

links = doc.getElementsByTagName r("a"),

=0,
len = links.length;
while(i < len){
update(links[i++]);
H
doc.getElementByld("go-btn").onclick = function(){

start();

¥

bd.className = "active";

-~

The updated version of initUI() first stores a reference to document in the local doc variable. Instead of
accessing a global variables three times, that number is cut down to one. Accessing doc instead of document is
faster because it's a local variable. Of course, this simplistic function won't show a huge performance
improvement, because it's not doing that much, but imagine larger functions with dozens of global variables being

accessed repeatedly; that is where the more impressive performance improvements will be found.

initUT() [T A B 56 document (19751 HAE N SR AL 5 doc e IRAEVS M) 4 R AR s (PR BU 1 IR, A
#& 3 . M doc 4R document R, PN E I —ANREAR R . AR, IXANE IR A S BoR B BRI
e, BUAEEMIRE, AN DA S—TF, LN eREEY R EVIR, Bartkaedadtg ime
2,

Scope Chain Augmentation Ba8/k B sk

Generally speaking, an execution context's scope chain doesn't change. There are, however, two statements

that temporarily augment the execution context's scope chain while it is being executed. The first of these is with.

R, —ANEATI TR SO A S . (U, A AR RA AT AEIS AT I Il I e AR As AT
W BN SCUE B . 2N with &3k,

The with statement is used to create variables for all of an object's properties. This mimics other languages
with similar features and is usually seen as a convenience to avoid writing the same code repeatedly. The initUI()

function can be written as the following:

with ik RO T A 5 @ PO — D BRI RV E A . R LB b, 2L oh RS T8 B T il 155 — 4
TR MAUS . initUI() & 0T LU S R an FFEC:

T

function initUI(){
with (document){ //avoid!
var bd = body,
links = getElementsByTagName r("a"),
i=0,
len = links.length;
while(i < len){
update(links[i++]);
}
getElementByld("go-btn").onclick = function(){
start();
s
bd.className = "active";

}

This rewritten version of initUI() uses a with statement to avoid writing document elsewhere. Though this may

seem more efficient, it actually creates a performance problem.

PEES 1) initUTORRCAAE I 1A with &3k, 82 k55 “document” XA HERALLF AR, M
SEBR BRI T AN ERE R L

When code execution flows into a with statement, the execution context's scope chain is temporarily

augmented. A new variable object is created containing all of the properties of the specified object. That object is

then pushed to the front of the scope chain, meaning that all of the function's local variables are now in the second

scope chain object and are therefore more expensive to access (see Figure 2-6).

AP HAT A with ZIAX, B4 N SO REEEIR I 58 70— H Rl 220 5 4
A, BUEIREN R ENE. PO GAdm N 2 HT SR 1 A, R BILAE e) A) FS A R T
BAENSE AR Gerh, BV AR S T (B 2-6) .

bady (object)
getblementByld | [unction)
gettlementsByTaghame | (function)

this {window)
aguments Il
bd undefined
finks undefined
initUI(} i undefined
executhon context [-
[Sapeduin | o
this window
window (object)
docment (obfecty
add {fumction)
total undefined

Figure 2-6. Augmented scope chain in a with statement

Kl 2-6 with ik SR 1 Bk

By passing the document object into the with statement, a new variable object containing all of the document
object's properties is pushed to the front of the scope chain. This makes it very fast to access document properties
but slower to access the local variables such as bd. For this reason, it's best to avoid using the with statement. As
shown previously, it's just as easy to store document in a local variable and get the performance improvement that

way.

LK document X 54 iHi 4T with Fika, — SRR RS T document XFRIFTATJEYE, HdfiA
BRI EE R TS o IXAEAS U) document (R PEARR DL, AHE VS] R AR AS B (VI A AR Mg T, 140 bd A2
o ERYRARP, B AT with 23550 EANHTIRE R0, SR MK document 7 AE—
SRR, T LR PEfE_E Tt

The with statement isn't the only part of JavaScript that artificially augments the execution context's scope
chain; the catch clause of the try-catch statement has the same effect. When an error occurs in the try block,
execution automatically flows to the catch and the exception object is pushed into a variable object that is then
placed at the front of the scope chain. Inside of the catch block, all variables local to the function are now in the

second scope chain object. For example:

1t JavaScript H A2 with KA XN S I2 47 8 B SC/E IS, try-catch Kk X1 catch 14
HAMFR . 4wy PR AR, BFRAE AN catch B, FRE 55 R G AR S8 Ay o i — A
AR, 7E catch e, bR T A JR) AR B AR AR BOCPE 55— ANVE SR e il

try {

methodThatMightCauseAnError();
} catch (ex){

alert(ex.message); //scope chain is augmented here

—

Note that as soon as the catch clause is finished executing, the scope chain returns to its previous state.

VHVER, U catch FHJRATIEEE, AR ATl 22 3% 0] 2 SR IR A .

The try-catch statement is very useful when applied appropriately, and so it doesn't make sense to suggest
complete avoidance. If you do plan on using a try-catch, make sure that you understand the likelihood of error. A
try-catch should never be used as the solution to a JavaScript error. If you know an error will occur frequently,

then that indicates a problem with the code itself that should be fixed.

URAE A2, try-catch FRIEAIEARR A HIAIIEA), BT DAANEE S 42 S o WERARTE R8T —> try-catch
W), IEMRORR T T RE R A MR R . —A try-catch AN AEA JavaScript £ R YL p . W ALK
FITE — MRS R A, IR UL 48 IEACR A 1)

You can minimize the performance impact of the catch clause by executing as little code as necessary within it.

A good pattern is to have a method for handling errors that the catch clause can delegate to, as in this example:

PRuT DU I G 4 AR (1 AME B MU catch FAIXHERERTE M. — MREF IR ACE R IRAL S — T I
HORALHE . 5]l

try {
methodThatMightCause AnError();
} catch (ex){

handleError(ex); //delegate to handler method

-

Here a handleError() method is the only code that is executed in the catch clause. This method is free to
handle the error in an appropriate way and is passed the exception object generated from the error. Since there is
just one statement executed and no local variables accessed, the temporary scope chain augmentation does not

affect the performance of the code.

handleError()BR #2 catch 1) "I AT [ME— QRS o 1 pR B LLIE 2477 7%) A BRA %, JF Bl th B e
RN R T HRA - &ER, BOHREARRETI, ARSI I SR A e AR i PR e .

Dynamic Scopes Zh7ZS1EF

Both the with statement and the catch clause of a try-catch statement, as well as a function containing (), are
all considered to be dynamic scopes. A dynamic scope is one that exists only through execution of code and

therefore cannot be determined simply by static analysis (looking at the code structure). For example:

Tt with LIEAIESE try-catch KIE W catch 7], LA EOMBEELL #BHA N s AS1E . —
A ENSAE R RIS AT AFAE, PR EEm s § St CRERIE D K GERAAEsIEEH
) o fil.

function execute(code) {
(code);
function subroutine(){
return window;
H
var w = subroutine();

//what value is w?

The execute() function represents a dynamic scope due to the use of (). The value of w can change based on the

value of code. In most cases, w will be equal to the global window object, but consider the following:

execute() PR HCE L 28— MNEAMEHIL, BAEMHEHT 0. wZERES code A K. KZHHR T, w
PN T4 R window X4, {EZTEHEUWT M

execute("var window = {};")

In this case, () creates a local window variable in execute(), so w ends up equal to the local window instead of
the global. There is no way to know if this is the case until the code is executed, which means the value of the

window identifier cannot be predetermined.

KRS, OFF executeORREHAIE T —ANRES window 28 & . FTLL w 2540 T 1X AN R #B window 748
SR RIRA . FrLAUE, ANISATIXBARRE A& A ML T A AR L, AR IEAF window IR V)7 L
ANBETIAEA S -

Optimizing JavaScript engines such as Safari's Nitro try to speed up identifier resolution by analyzing the code
to determine which variables should be accessible at any given time. These engines try to avoid the traditional
scope chain lookup by indexing identifiers for faster resolution. When a dynamic scope is involved, however, this
optimization is no longer valid. The engines need to switch back to a slower hash-based approach for identifier

resolution that more closely mirrors traditional scope chain lookup.

AL JavaScript 514, {541 Safari f) Nitro 518, i B 3 73 A AU A0 52 WIS L2 A 1 I AZ AR AT SN)
i, RANPAR AT R . X885 | A PR AR e A B A gk, U RARR IR &R 51 Ky kAT P
WA W A, ST EANEER] T 518 20 M8 I8 1) 5 T A 2R I AR IRAT
PONITE, RSN B R

For this reason, it's recommended to use dynamic scopes only when absolutely necessary.

TERCAIXAN S R, AR L0 B 77] Bh 241 A

Closures, Scope, and Memory 4, {EfIR, FRE

Closures are one of the most powerful aspects of JavaScript, allowing a function to access data that is outside
of'its local scope. The use of closures has been popularized through the writings of Douglas Crockford and is now
ubiquitous in most complex web applications. There is, however, a performance impact associated with using

closures.

V402 JavaScript fz 5 KK — N7, 8 SCVFRR D) 1) Ja) AE Bl A i . AT 4 F B Douglas
Crockford [AFRATHER, LRI M SN B AE. A, A —FEREZ M AT 5.

To understand the performance issues with closures, consider the following:

AT RS A RIPEREREL, 25 R8I)1

function assignEvents(){
var id = "xdi9592";
document.getElementByld("save-btn").onclick = function(event){

saveDocument(id);

}s

The assignEvents() function assigns an event handler to a single DOM element. This event handler is a closure,
as it is created when the assignEvents() is executed and can access the id variable from the containing scope. In

order for this closure to access id, a specific scope chain must be created.

assignEvents() B ZCH —1> DOM JTH#fRE T — N4 E iR . SE b B a2 — A e, 24
assignEventsOHUAT I G, 1] LAV;) HVE I Y30 id 28 . X7yl s id Z8 i), 20t

AR RE IO R

When assignEvents() is executed, an activation object is created that contains, among other things, the id
variable. This becomes the first object in the execution context's scope chain, with the global object coming

second. When the closure is created, its [[Scope]] property is initialized with both of these objects (see Figure

2-7).

Y assignBventsOBIMATING, —NBOEN SO0, RS TSN AMASE, HPhadsid e, Bk
B IEAT I R SCVE I EE B — AR5, SRRSO A U AIEERS, [[Scope]]JE 11X EEX)
- mea LK 2-7)

Activation object

assignEvents()
execution context this wingdaw

Figure 2-7. Scope chains of the assignEvents() execution context and closure
2-7 assignEvents()iz AT] b ST AT FH I EE A A

Since the closure's [[Scope]] property contains references to the same objects as the execution context's scope
chain, there is a side effect. Typically, a function's activation object is destroyed when the execution context is
destroyed. When there's a closure involved, though, the activation object isn't destroyed, because a reference still
exists in the closure's [[Scope]] property. This means that closures require more memory overhead in a script than

a nonclosure function. In large web applications, this might become a problem, especially where Internet Explorer

is concerned. IE implements DOM objects as nonnative JavaScript objects, and as such, closures can cause

memory leaks (see Chapter 3 for more information).

H T P AL IR [[Scope] 1 (L 3% 553847 1 b T ST R BRBEAH IR R0 5 51 H PERIME R » AN
BN R 51T R SRR S 4 A, RN SO ORI AR A T A
BI[[Scopel B HE . XA AT 1 A S G EUA L, #5282 A AETFRY . E KA BTN I,
XTRE N, JUILAE Internet Explorer "1 S 475G o IE il FlJEACHE JavaScript X1 % S2HL DOM X%, 4]

%%&V‘]T”ﬁﬁ% (E%'flﬁl u/JLAEB 3 E)

When the closure is executed, an execution context is created whose scope chain is initialized with the same
two scope chain objects referenced in [[Scope]], and then a new activation object is created for the closure itself

(see Figure 2-8).

AMEIRATI, AT R R SCR g, e R FEE S [[Scopel]HH 5 1T PN 7] (1 1 HT 1
RN BRIEIE, RIE—DHIEGE S SO B S8 e0E (2K 2-8) .

Activation object (dosure)

this windaw
arguments]
event {object)

Chosure

exeaution context
gl | o~ wponens | 0|
T id “wligsr” |

Global object
this windaw
window fobject)
document {object)
assignivents | {function)
saveDocument | {function)

Figure 2-8. Executing the closure

2-8 BT

Note that both identifiers used in the closure, id and saveDocument, exist past the first object in the scope
chain. This is the primary performance concern with closures: you're often accessing a lot of out-of-scope

identifiers and therefore are incurring a performance penalty with each access.

B P A T AR RET, id A1 saveDocument, 177 TAEEEESE W2 G E L. X2

PRI T VR RE DU Sl IR Uy 1) L8V F 2 AR UUARE BRIV) #8380 e PR B R

It's best to exercise caution when using closures in your scripts, as they have both memory and execution
speed concerns. However, you can mitigate the execution speed impact by following the advice from earlier in
this chapter regarding out-of-scope variables: store any frequently used out-of-scope variables in local variables,

and then access the local variables directly.

FERAAS e /N A T PR, IAF B AT ARME AR oI . (HU, Am] DU A B LR L 1Y
R HOME R A BB, XS AT A g H] AN A N R B, SRR AR VT 1) R

Object Members Xt % i 7

Most JavaScript is written in an object-oriented manner, either through the creation of custom objects or the
use of built-in objects such as those in the Document Object Model (DOM) and Browser Object Model (BOM).

As such, there tends to be a lot of object member access.

KZ 4 JavaScript AR LATH X R AEAME . el 81 A e XA ZIE 2 W E IR S, s
PAXTGAEAL (DOMD FIRBEAAT AR (BOM) 2t % BRI, AA7EIR 25 G M 5y v i) o

Object members are both properties and methods, and there is little difference between the two in JavaScript.
A named member of an object may contain any data type. Since functions are represented as objects, a member
may contain a function in addition to the more traditional data types. When a named member references a function,

it's considered a method, whereas a member referencing a nonfunction data type is considered a property.

G AR5 i%, 1E JavaScript 1, R XK AN A4 S T AR S AT B R
Mo BRAReR Bt PP S, 2N BR BR R GRS, o D AR A ki 4|
T e B, ERRRAE A IR, T AR R BRI B AR AR

As discussed earlier in this chapter, object member access tends to be slower than accessing data in literals or
variables, and in some browsers slower than accessing array items. To understand why this is the case, it's

necessary to understand the nature of objects in JavaScript.

IE WA T BT e 1, RS R 03 b T 4 5 R A B U Il g, e s b Lk 1) B 4 Ik
PN, BIPRILP RN, S PR JavaScript ORI

Prototypes R

Objects in JavaScript are based on prototypes. A prototype is an object that serves as the base of another
object, defining and implementing members that a new object must have. This is a completely different concept
than the traditional object-oriented programming concept of classes, which define the process for creating a new
object. Prototype objects are shared amongst all instances of a given object type, and so all instances also share

the prototype object's members.

JavaScript H X GO T S EI . JUR R AT R IIERS, 58 XOFSEIL T —NE ST URAT (R
Plo X MU SE AR TARGEM N RGOS, B ST AT R IR BRSO AT
Y ERIIN RSP IS, I S 38 2 S50 S A 5%

An object is tied to its prototype by an internal property. Firefox, Safari, and Chrome expose this property to
developers as __proto__; other browsers do not allow script access to this property. Any time you create a new
instance of a built-in type, such as Object or Array, these instances automatically have an instance of Object as

their prototype.

AN G I AN R E e 2 e 1 JEJE . Firefox, Safari, 1 Chrome [f)FF & N ST BOX— @M,
fF__proto__; AN ST A RVFIIAS I —Jm ko AEMTINBARENEE 4> A BRI SEBI, I Object 5%
Array, XL HEHAT A Object 1A EATN I

Consequently, objects can have two types of members: instance members (also called "own" members) and
prototype members. Instance members exist directly on the object instance itself, whereas prototype members are

inherited from the object prototype. Consider the following example:

DRI, X 5T DAAT BRI R DA 9B 5 CBRAE “own™ i i) FS TR DA o 52081 1 1 B B A7 A7
LB E S, T ETE R MM GISTEAE K. 25 58T i 6] 1
var book = {
title: "High Performance JavaScript",
publisher: "Yahoo! Press"
¥
alert(book.toString()); //"[object Object]"

In this code, the book object has two instance members: title and publisher. Note that there is no definition for
the method toString() but that the method is called and behaves appropriately without throwing an error. The

toString() method is a prototype member that the book object is inheriting. Figure 2-9 shows this relationship.

HARHE T, book X5 A PIAN SR 51 : title A1 publisher. VEREE -3 & X toString()$2 1, (HjExA
PR T, WA . toString()pREUM & — > book X R4k UL i . Kl 2-9 Wom H e
Z IR R

book prototype

Figure 2-9. Relationship between an instance and prototype

K 2-9 Sl 5B AR

The process of resolving an object member is very similar to resolving a variable. When book.toString() is
called, the search for a member named "toString" begins on the object instance. Since book doesn't have a
member named toString, the search then flows to the prototype object, where the toString() method is found and

executed. In this way, book has access to every property or method on its prototype.

ALEEXF G 3 (R R 5 AR T AL B3 ML, 24 book.toString(V# A FH I, X6 e 52 B4 T 44 4 “toString” [%
R, HHMSZILEITUG, 1R book WA 4 4 toString HI G, IS AMtHL S R TEX %, EAH KT
toString() 5 L PATE « WRLIXFF T, booke A LAV In) & (1) J5L BT AT (R REA J8 Mk a5 v

You can determine whether an object has an instance member with a given name by using the
hasOwnProperty() method and passing in the name of the member. To determine whether an object has access to

a property with a given name, you can use the in operator. For example:

PRAT LA] hasOwnProperty () bR 52 —/NA S 15 HATR S AR ISEBI L, CERZSEOIE K 4
MO o BHERN SIS RA AN AR EE, ARn] DUE AT ine 0

var book = {
title: "High Performance JavaScript",
publisher: "Yahoo! Press"
I8
alert(book.hasOwnProperty("title")); //true
alert(book.hasOwnProperty("toString")); //false

alert("title" in book); //true

alert("toString" in book); //true

In this code, hasOwnProperty() returns true when "title" is passed in because title is an object instance; the
method returns false when "toString" is passed in because it doesn't exist on the instance. When each property

name is used with the in operator, the result is true both times because it searches the instance and prototype.

BEARES 1, hasOwnProperty ()% A “title” I 1% 1] true, PA A title J&— A~ SEA i 51 o A5 N “toString” I 1% 1] false,
K2 toString ANFESEEI 2 e G RATH] in BRAEFFAIX PN @M, AR [HIHR 2 true, [AI0A ‘& R4 2R S
NERIFIE .

Prototype Chains JRE4

The prototype of an object determines the type or types of which it is an instance. By default, all objects are
instances of Object and inherit all of the basic methods, such as toString(). You can create a prototype of another

type by defining and using a constructor. For example:

XGRIEHE T AP BOATEOL T, BT R AT Object IUSEH, JFAkAK T HT AT 245
%, 40 toString()o AR AT LA RG4S B 3 A — PRI I . Bl

function Book(title, publisher){
this.title = title;
this.publisher = publisher;
H
Book.prototype.sayTitle = function(){
alert(this.title);
¥
var book1 = new Book("High Performance JavaScript", "Yahoo! Press");
var book2 = new Book("JavaScript: The Good Parts", "Yahoo! Press");
alert(book1 instanceof Book); //true
alert(book1 instanceof Object); //true
book1.sayTitle(); /"High Performance JavaScript"

alert(book1.toString()); //"[object Object]"

The Book constructor is used to create a new instance of Book. The book1 instance's prototype (__proto_) is
Book.prototype, and Book.prototype's prototype is Object. This creates a prototype chain from which both book1

and book?2 inherit their members. Figure 2-10 shows this relationship.

Book 4t s FH T~ it — 81 1) Book 5451 . book1 [¥1JE (_ proto_) /& Book.prototype, Book.prototype

TR A& Objecto XA T/ NMETESE, bookl 1 book2 ZkAk T e MIIHIK . Kl 2-10 B X FIo< R .

[bookt]
pruto .
o
e | pvasaipr
' > Bookprotatype | e
o N ey e e
onstructor | @ isPrototypeOf | (fumction)
== sayTitle {function) prapertyldEnumerable | (function)
proto| @ e F...F!!!!!E toSiring (function)
e | i | | Lo N T ()
pablisher| “Yahoo! Press”

Figure 2-10. Prototype chains

K 2-10 JRIEHE

Note that both instances of Book share the same prototype chain. Each instance has its own title and publisher
properties, but everything else is inherited through prototypes. Now when book1.toString() is called, the search
must go deeper into the prototype chain to resolve the object member "toString". As you might suspect, the deeper
into the prototype chain that a member exists, the slower it is to retrieve. Figure 2-11 shows the relationship

between member depth in the prototype and time to access the member.

FER, P Book SEBIIL R —ANEEHE. REASSLBIINAT B SR title A1 publisher J& 1, HILAbE 5144k
AR HEE . 2 bookl.toString VB HII , R TAFLAURN UL BEA REFLBXT G K 51 “toString”. IEWIR
MRBERIIAE, RN R, P8R A Bl 28 o 181 2-11 S B SR 2 SR BE b T AR R 2 5 15) IS
NP

150 4

Timie (mis) per 200,000 reads
s

100 4

50 4

RS
éﬁ&#ﬁﬁi&ﬁ“ﬁf@@éﬁ &

||;|Inuan<e B Frototype @).2nd pratotype ISrdpmml:mE|

Figure 2-11. Data access going deeper into the prototype chain

B 2-11 Hdls vy RN U BE

Although newer browsers with optimizing JavaScript engines perform this task well, older
browsers—especially Internet Explorer and Firefox 3.5—incur a performance penalty with each additional step
into the prototype chain. Keep in mind that the process of looking up an instance member is still more expensive
than accessing data from a literal or a local variable, so adding more overhead to traverse the prototype chain just

amplifies this effect.

HARAG FAAL TavaScript 512 B 20N MBS (E AT 45 T R I R 47, (HSZ 205 es, Rl /& Internet
Explorer Fl Firefox 3.5, FRHAENJEIEEE— 28 NPERERI . 04, R IH % G il RE b v 1) B4
B R AR A R, BT LA N g s B I A I A OR T X R R

Nested Members #tZE % i

Since object members may contain other members, it's not uncommon to see patterns such as
window.location.href in JavaScript code. These nested members cause the JavaScript engine to go through the
object member resolution process each time a dot is encountered. Figure 2-12 shows the relationship between

object member depth and time to access.

P06 Gk D4 AT e A e B 0, 8 AN R LI 5 v window location href IX AR 2 o £EIE 2] — > i,
JavaScript 5|8l BEAEXT Gl 0L EHAT — KNI R . P 2-12 o GG R D VR 5 7 I B TR) R 2R &R

250

—
—

= g
L s

Time {mis) per 200,000 reads
g

50+
1]
Property depth

== Firefor 3 == [nteret kplorer 8

Firefox 3.5 ~u— Opera 5.64
=ae= (hrame1 - = (pera 10 feta
=== (hrome 2 - = 5afari 3.2
~#= [nternet Explorer 7 —o— Safari 4

Figure 2-12. Access time related to property depth

Bl 2-12 Dyl i) 55 g PER B R R AR

It should come as no surprise, then, that the deeper the nested member, the slower the data is accessed.
Evaluating location.href is always faster than window.location.href, which is faster than
window.location.href.toString(). If these properties aren't on the object instances, then member resolution will take

longer as the prototype chain is searched at each point.

gE FIEANZTBE, R IR, U 1a) 7 FE AR . location.href &P T window.location.href, 1M /5 32
Lt window.location.href.toString() SR o U HLIX L8 J7 AN 0T G SE SRk, B4 B B AT I A A i 1
HRIFIEEE, X T E K.

Caching Object Member Values ZZFEXT4 5% 57 B

With all of the performance issues related to object members, it's easy to believe that they should be avoided
whenever possible. To be more accurate, you should be careful to use object member only when necessary. For

instance, there's no reason to read the value of an object member more than once in a single function:

1T BT IXSE PR RE fa) JL 5 0 B G AT 5%, I AT SR AT RE L5 et S A T e AT SERA DI, ARAY /N0
o, HAEDEENGOL AT S bt o Blhn, B B AE AN B 2 BRSSO

function hasEitherClass(element, classNamel, className2){

return element.className == classNamel || element.className == className?2;

In this code, element.className is accessed twice. Clearly this value isn't going to change during the course of
the function, yet there are still two object member lookups performed. You can eliminate one property lookup by

storing the value in a local variable and using that instead:

FEMARSH, element.className #1710 T PIIK. ARBISE, 7EIXAS s B R Hh & RME R AN 2R (1, (L)
VYN P AT SUN R S LA U W E /N M i O 1 SV € L 2 S UR I TG I

function hasEitherClass(element, classNamel, className2){
var currentClassName = element.className;

return currentClassName == classNamel || currentClassName == className?2;

This rewritten version of the function limits the number of member lookups to one. Since both member
lookups were reading the property's value, it makes sense to read the value once and store it in a local variable.

That local variable then is much faster to access.

VEH S 5 AR RRCAS B A AR R IR REAT Tk BRI R R AAE B m VAR, P DA BE b R O0FR
EAF N SR FRAS R o JRy AR B AR U7) B RAG 2

Generally speaking, if you're going to read an object property more than one time in a function, it's best to

store that property value in a local variable. The local variable can then be used in place of the property to avoid

the performance overhead of another property lookup. This is especially important when dealing with nested

object members that have a more dramatic effect on execution speed.

R, ARAE] A R R R B R R SR, PR EAAAN AR R DUR AR
EEAURTE, B R R A AR TERETT Y o AEARBRIR X Gl 0 N IX R 2L, B TR is T
JE 7 A A LB (K50

JavaScript namespacing, such as the technique used in YUI, is a source of frequently accessed nested

properties. For example:

JavaScript [jdr 4477 8], W1 YUL Al - IGHOR, 2485 Ui in ik @ 1 ki — . it

function toggle(element){
if (YAHOO.util.Dom.hasClass(element, "selected")){
YAHOO.util. Dom.removeClass(element, "selected");
return false;
} else {
YAHOO.util.Dom.addClass(element, "selected");

return true;

}

This code repeats YAHOO.util.Dom three times to access three different methods. For each method there are
three member lookups, for a total of nine, making this code quite inefficient. A better approach is to store

YAHOO.util.Dom in a local variable and then access that local variable:

P R YAHOO. util. Dom =R LIRAG =R AR5k R A =08 R R, B
W FHEULARRDAT M. — AL T2 YAHOO. util. Dom A7 /1 RFAE f b, AR5 U i) Jm i 48 ot

function toggle(element){
var Dom = YAHOO.util.Dom;

if (Dom.hasClass(element, "selected")){

Dom.removeClass(element, "selected");
return false;

}else {
Dom.addClass(element, "selected");

return true;

-~

—

The total number of member lookups in this code has been reduced from nine to five. You should never look

up an object member more than once within a single function, unless the value may have changed.

S R R R BNV B TR o A AR, ARGEANNAZS A G B T IR,
BRAR AR T RECAE o

Summary M4

Where you store and access data in JavaScript can have a measurable impact on the overall performance of
your code. There are four places to access data from: literal values, variables, array items, and object members.

These locations all have different performance considerations.

7 JavaScript H, HE AL E T DOSNACRS AV BE - AR TR A DURREE DT SR HAk R, AR
i, AL NEE. EANTAE AR E .

» Literal values and local variables can be accessed very quickly, whereas array items and object members take

longer.
PR AN ey AR Ry) AR R, B TN SR il 0 i 2 I (]

* Local variables are faster to access than out-of-scope variables because they exist in the first variable object of
the scope chain. The further into the scope chain a variable is, the longer it takes to access. Global variables are

always the slowest to access because they are always last in the scope chain.

JriF A B LU AN AR R R, RN B TR TSR A 55— D G o A AR T e b O A BB, U7 17 B il
I TR AOR A . 4R AR BRGSO e TR R A1 B) dee e —

* Avoid the with statement because it augments the execution context scope chain. Also, be careful with the catch

clause of a try-catch statement because it has the same effect.

e Al with RIA, PSSR TIa 47 81 BN SCAE R - it ELR /N OXSfF try-catch FIA U catch
TH), Fohe BA RS,

* Nested object members incur significant performance impact and should be minimized.
TR B A o3t KPR RE S, D]

* The deeper into the prototype chain that a property or method exists, the slower it is to access.
— AN P T R AR SR HE P A BB, U) e A g

* Generally speaking, you can improve the performance of JavaScript code by storing frequently used object
members, array items, and out-of-scope variables in local variables. You can then access the local variables faster

than the originals.

R, RS LGB IR VA R JavaScript AU IIVERE: KRR HAE I RORS R, B4, ARSI AR
AR R AR A, TR R AR R AR 2 PR TR LR SRR AR

By using these strategies, you can greatly improve the perceived performance of a web application that

requires a large amount of JavaScript code.

Tl I LS, AT DUBR R e v A S R K TavaScript AR K 199 5T K52 B P RE -

=% DOM Scripting DOM %2

DOM scripting is expensive, and it's a common performance bottleneck in rich web applications. This chapter

discusses the areas of DOM scripting that can have a negative effect on an application's responsiveness and gives

recommendations on how to improve response time. The three categories of problems discussed in the chapter

include:

Xt DOM EARAYT &3 53, A5 P9 GO] Pl At — N ERE A . AT 18 n] e R e i 3 18 61 1 50

('] DOM %ife, JFF4e e v mi gt B Al AR B 18 = 2 A il

* Accessing and modifying DOM elements

Vil A& DOM Ju %

* Modifying the styles of DOM elements and causing repaints and reflows

B4 DOM JLEAIFE, 3l 2 A H T HE R

 Handling user interaction through DOM events

1 DOM AR HH 7 i

But first—what is DOM and why is it slow?

HP5E—AT 4 & DOM? fib hy 440 ?

DOM in the Browser World 3] 251H 54 DOM

The Document Object Model (DOM) is a language-independent application interface (API) for working with
XML and HTML documents. In the browser, you mostly work with HTML documents, although it's not
uncommon for web applications to retrieve XML documents and use the DOM APIs to access data from those

documents.

AEXFTGAEAL (DOM) & —AMSZ TE S, i XML fl HTML SCRERAER N R P80 (APD .
EXEA Y, 25 HTML SCRY4TACIE, 78 0 H PR R XML SCRY R % L. DOM APIs 2 H T
i) 3 A SR R R

Even though the DOM is a language-independent API, in the browser the interface is implemented in
JavaScript. Since most of the work in client-side scripting has to do with the underlying document, DOM is an

important part of everyday JavaScript coding.

S DOM & 55 0 RM AP, 7530 Yo 2 o (142 1 302 LA JavaScript SEILIRT . 2% 7 b K 22 BRI AR 7
L3RI AC1E, DOM Hthih JavaScript A4 65 H 47 4 o 3 AL G 5 o

It's common across browsers to keep DOM and JavaScript implementations independent of each other. In
Internet Explorer, for example, the JavaScript implementation is called JScript and lives in a library file called
jscript.dll, while the DOM implementation lives in another library, mshtml.dll (internally called Trident). This
separation allows other technologies and languages, such as VBScript, to benefit from the DOM and the rendering
functionality Trident has to offer. Safari uses WebKit's WebCore for DOM and rendering and has a separate
JavaScriptCore engine (dubbed SquirrelFish in its latest version). Google Chrome also uses WebCore libraries
from WebKit for rendering pages but implements its own JavaScript engine called V8. In Firefox, Spider-Monkey
(the latest version is called TraceMonkey) is the JavaScript implementation, a separate part of the Gecko

rendering engine.

PN 2538 5 Bk DOM S LA JavaSeript SEILORHFAH FBST . 4411, 75 Internet Explorer 11, #F% 4 JScript
() JavaScript ST T FE SCAF jseript.dll HF, 1 DOM SEIRA T 55— mshtml.dll (R34S Trident)
XTIy AR ARVFHAREARNIE 7, W VBScript, %24 T Trident 24X DOM Dy fiE 4L Ui Safari
fifF WebKit [¥] WebCore ZLEE DOM FE By, HAT—AN73 B JavaScriptCore 5% (ol A (1) 45 /&
SquirrelFish) . Google Chrome tH{#i] WebKit [) WebCore JFEE 4L UL 1HI, (HSZIL T H 2.1 JavaScript 5]
V8, 7E Firefox H', JavaScript 3<HIKH Spider-Monkey (5#Thit H#K{E TraceMonkey) , 53 Gecko Vi %t

GRS

Inherently Slow K& xtig

What does that mean for performance? Simply having two separate pieces of functionality interfacing with
each other will always come at a cost. An excellent analogy is to think of DOM as a piece of land and JavaScript

(meaning ECMAScript) as another piece of land, both connected with a toll bridge (see John Hrvatin, Microsoft,

MIXO009, http://videos.visitmix.com/MIX09/T53F). Every time your ECMAScript needs access to the DOM, you
have to cross this bridge and pay the performance toll fee. The more you work with the DOM, the more you pay.
So the general recommendation is to cross that bridge as few times as possible and strive to stay in ECMAScript
land. The rest of the chapter focuses on what this means exactly and where to look in order to make user

interactions faster.

O BRI AT AWe? TRk, PIANIT B)3 5 DA R4 o R Pk e ke . — METE R
LLig 29 DOM B 505, 38 JavaScript (ECMAScript) FHJl s> 8l, DI 2 L IR g ifris
P (2 John Hrvatin, %, MIX09, http://videos.visitmix.com/MIX09/TS3F) . %3/ ECMAScript 7 % 1)j
] DOM I, ARG EHr, &R I, FRE/E DOM IREUE 2, PR . — R U R &
DI IREL, %% 0045 BAE ECMAScript B Fo AT)@ es PR iR, S VRIRNOZ AT AT,
PAF g H P AT FLIEEE

DOM Access and Modification DOM 1 |8 FE L

Simply accessing a DOM element comes at a price—the "toll fee" discussed earlier. Modifying elements is

even more expensive because it often causes the browser to recalculate changes in the page geometry.

fEf SRR UL, IEWIAT T AT A RE, Uil —/> DOM JG & AR Bt A8 — Rl i 2. 1B Soc xR M2 H
FIREEE BT, PR B H 3 BN b A T R S i) LT AR A

Naturally, the worst case of accessing or modifying elements is when you do it in loops, and especially in

loops over HTML collections.

AR, VT BB SO U B 1T DU AT AR A AT BEER AR e il 2 4E HTML 455 A A 3h

Just to give you an idea of the scale of the problems with DOM scripting, consider this simple example:

N T HEAR—AKT DOM A5 [KA EN S, 5 18 1 T (¥4 1

function innerHTMLLoop() {
for (var count = 0; count < 15000; count++) {

document.getElementByld('here").innerHTML +='"a’;

—

-~

This is a function that updates the contents of a page element in a loop. The problem with this code is that for
every loop iteration, the element is accessed twice: once to read the value of the innerHTML property and once to

write it.

Vb pR AR A rp SR I A 2 X BRI 8UE , AEREAEIA S #O6 DOM JCE s [IR K

BEH innerHTML JEPERER, 71— KB AN'E.

A more efficient version of this function would use a local variable to store the updated contents and then

write the value only once at the end of the loop:

— A AT BRI A A T JR) PR A R A7 BB IR (N FEIRIA SR I — PR B

function innerHTMLLoop2() {
var content = ";
for (var count = 0; count < 15000; count++) {
content +="'a';

}

document.getElementByld('here").innerHTML += content;

This new version of the function will run much faster across all browsers. Figure 3-1 shows the results of
measuring the time improvement in different browsers. The y-axis in the figure (as with all the figures in this
chapter) shows execution time improvement, i.e., how much faster it is to use one approach versus another. In this

case, for example, using innerHTMLLoop2() is 155 times faster than innerHTMLLoop() in IE6.

AT RS RE, F AR A IS T R ARG 22 . B 3-1 R T AEANIAI 3 U o b e 3 () AR T . Y il
WA o ST, Wi, NS MR T 2045 #ilan{E TE6 T, innerHTMLLoop2()tt

innerHTMLLoop()fR 1~ 155 f%.

10 -
N 6

155%
[P

Times faster
=
A
E

11 101x

‘I ,HH,I‘I,HH%,

£ & q&éé“ q@jﬁ 4@{:" ﬁ"‘ c*ﬁ} f"‘ @_3'53‘ @9‘9‘

Figure 3-1. One benefit of staying within ECMAScript: innerHTMLLoop2() is hundreds of times faster

than innerHTMLLoop()

K 3-1 innerHTMLLoop2()tt innerHTMLLoop()Fk L 7 %

As these results clearly show, the more you access the DOM, the slower your code executes. Therefore, the

general rule of thumb is this: touch the DOM lightly, and stay within ECMAScript as much as possible.

RG], URV7) DOM B, AR P AT I SEmt g o PRI, — Mt iRidk o e

£ DOM, JFREIRFFAE ECMAScript i 4 .

innerHTML Versus DOM methods innerHTML 5 DOM 77 EhEk

Over the years, there have been many discussions in the web development community over this question: is it
better to use the nonstandard but well-supported innerHTML property to update a section of a page, or is it best to
use only the pure DOM methods, such as document.createElement ()? Leaving the web standards discussion aside,
does it matter for performance? The answer is: it matters increasingly less, but still, innerHTML is faster in all

browsers except the latest WebKit-based ones (Chrome and Safari).

2K, 11 web R FEALX CAX ML IR BT TVF2 1010 SR G, AT AR AR R4 SCRF
] innerHTML J& {4 3 4fWe, 48728 4l DOM J57%, 1 document.createElement ()5 47We ? WA [EFR1HE

R, BRI ? AR MEREESIAK, B, TN EET, innerHTML &% B Je—4%, 5
T EOHEET WebKit] %4 (Chrome A1 Safari) .

Let's examine a sample task of creating a table of 1000 rows in two ways:
EBATRIG— M, PR R A > 1000 171K -
* By concatenating an HTML string and updating the DOM with innerHTML
I IE A HTML 745 8, 285 50T DOM [innerHTML Jg %
* By using only standard DOM methods such as document.createElement() and document.createTextNode()
1L FrE DOM J774 document.createElement () document.createTextNode()

Our example table has content similar to content that would have come from a Content Management System

(CMS). The end result is shown in Figure 3-2.

AT HRRNBEN—DAFEHRG (CMS) H3keT, TLR/Rg 1kl 3-2,

1 And the answer is... yes }mvmnr.isﬂ htip:/fexample.org/1 himl :&
2 And the answer is... oo }:umilﬂ it fexample oogd him] :ﬁf‘m
r T - [T T o B T o T o

Figure 3-2. End result of generating an HTML table with 1,000 rows and 5 columns

K 3-2 AlEE— 1000 4T 5 7] HTML %

The code to generate the table with innerHTML is as follows:

f#H innerHTML 1l & & (A5 1 R -

function tablelnnerHTML() {
var i, h = ['<table border="1" width="100%">"];
h.push('<thead>");
h.push('<tr><th>1d<\/th><th>yes?<\/th><th>name<\/th><th>url<\/th><th>action<\/th><\/tr>");
h.push('<Vthead>");
h.push('<tbody>");
for (i=1;1<=1000; i++) {
h.push('<tr><td>');
h.push(i);
h.push('<Vtd><td>");
h.push('And the answer is... '+ (1 % 2 ? 'yes' : 'n0'));
h.push('<Vtd><td>");
h.push('my name is #' + 1);
h.push('<Vtd><td>");
h.push('http://example.org/' + i + "html<Va>');
h.push('<Vtd><td>");
h.push('");
h.push(' edit<Va><\/1i>"),
h.push(’ delete<Va><\/1i>');
h.push('<\ul>');
h.push('<Vtd>");
h.push('<Vtr>");
H
h.push('<Vtbody>");
h.push('<Vtable>");

document.getElementByld('here").innerHTML = h.join(");

In order to generate the same table with DOM methods alone, the code is a little more verbose:

WAL DOM J5 ik B FIFE 0, AT 0K,

function tableDOM() {

var i, table, thead, tbody, tr, th, td, a, ul, li;

tbody = document.createElement ('tbody');

for (i=1;1<=1000; i++) {
tr = document.createElement ('tr');
td = document.createElement ('td');
td.appendChild(document.createTextNode((i % 2) ? 'yes' : 'no'));
tr.appendChild(td);
td = document.createElement ('td");
td.appendChild(document.createTextNode(i));
tr.appendChild(td);
td = document.createElement ('td');
td.appendChild(document.createTextNode('my name is #' + 1));
tr.appendChild(td);
a = document.createElement ('a');
a.setAttribute('href', 'http://example.org/' + i + ".html');
a.appendChild(document.createTextNode('http://example.org/' + 1 + "html'));
td = document.createElement ('td');
td.appendChild(a);
tr.appendChild(td);
ul = document.createElement (‘ul’);
a = document.createElement ('a');
a.setAttribute('href', 'edit.php?id="+ 1);
a.appendChild(document.createTextNode('edit"));
li = document.createElement ('li');
li.appendChild(a);
ul.appendChild(li);

a = document.createElement ('a');

a.setAttribute(‘href, 'delete.php?id='+i);
a.appendChild(document.createTextNode('delete'));
li = document.createElement ('i");
li.appendChild(a);
ul.appendChild(li);
td = document.createElement ('td');
td.appendChild(ul);
tr.appendChild(td);
tbody.appendChild(tr);
b
tr = document.createElement ('tr");
th = document.createElement ('th');
th.appendChild(document.createTextNode('yes?"));
tr.appendChild(th);
th = document.createElement ('th");
th.appendChild(document.createTextNode('id"));
tr.appendChild(th);
th = document.createElement ('th');
th.appendChild(document.createTextNode('name'));
tr.appendChild(th);
th = document.createElement('th");
th.appendChild(document.createTextNode('url"));
tr.appendChild(th);
th = document.createElement('th");
th.appendChild(document.createTextNode('action'));
tr.appendChild(th);
thead = document.createElement('thead');
thead.appendChild(tr);
table = document.createElement('table');

table.setAttribute('border’, 1);

table.setAttribute('width', '100%");
table.appendChild(thead);
table.appendChild(tbody);

document.getElementByld('here").appendChild(table);

The results of generating the HTML table using innerHTML as compared to using pure DOM methods are
shown in Figure 3-3. The benefits of innerHTML are more obvious in older browser versions (innerHTML is 3.6
times faster in [E6), but the benefits are less pronounced in newer versions. And in newer WebKit-based browsers
it's the opposite: using DOM methods is slightly faster. So the decision about which approach to take will depend

on the browsers your users are commonly using, as well as your coding preferences.

4] innerHTML F14i DOM J7 3618 HTML K[45 2 WKl 3-3. innerHTML (¥4 &b 7 2 2
dr BRI S W (FE TE6 Y innerHTML XS T4k 3.6 ff) , (HAEHTRCA R WA st A AW 1 i fE S
(KL WebKit [W% A5 B IELF A A DOM Jyvkiidie. DRk, gk SRS RR 7 vk B
AR, LA ARI b (R LT o

40 5
AL I
30
25
10 175K 1y

15 4 1.35

11?: 1.06x 119
1.0 4
0-5- H H
0

=05 -

10
15 = H:l: =L 1.‘5

""-I"*s}ﬁf@é@

Times faster

DL @@é

Figure 3-3. The benefit of using innerHTML over DOM methods to create a 1,000-row table;

innerHTML is more than three times faster in IE6 and slightly slower in the latest WebKit browsers

3-3 ffiHH] innerHTML A1 DOM J5 V%6133 —> 1000 17 (1%
7E IE6 "', innerHTML LUXT TP =A%, (HAEEB LT WebKit Fr3 B 2% Hh i =X 5+

Using innerHTML will give you faster execution in most browsers in performance-critical operations that
require updating a large part of the HTML page. But for most everyday cases there isn't a big difference, and so
you should consider readability, maintenance, team preferences, and coding conventions when deciding on your

approach.

UARAE PR 20 R AT A HEOBT— KB HTML Ui, innerHTML £ K 25 2000 B2 as Hh AT 3R . (EX
TREHH WSS, HLERIFAK, PrURB S REAE Bt nrgeyt, BIASIHEE, AU KUk oKk
ERE YURE R IR 12

Cloning Nodes ¥ f5 7o &

Another way of updating page contents using DOM methods is to clone existing DOM elements instead of
creating new ones—in other words, using element.cloneNode() (where element is an existing node) instead of

document.createElement().

T DOM J3 25087 BT I N 71K o5 — Mgt se B 7 DOM i, Il A2 BB i—— Bl

element.cloneNode() (element s&— A CAFER 1T 0 A document.createElementy();

Cloning nodes is more efficient in most browsers, but not by a big margin. Regenerating the table from the
previous example by creating the repeating elements only once and then copying them results in slightly faster

execution times:

FERZHENAS L, SR R A RCR, HIREAKRZ . BT K I Fop AR v i) 5 (1,
I H A K, R ER AT R HIERAE, ZRHOUERIBAR T 5

* 2% in IES8, but no change in [E6 and IE7
£ TE8 H R 2%, {H{E IE6 Al IE7 A2k

* Up to 5.5% in Firefox 3.5 and Safari 4

1 Firefox 3.5 F Safari 4 FH T 5.5%

* 6% in Opera (but no savings in Opera 10)

7t Opera 1R T 6% ({HJELE Opera 10 1 G425 10)

* 10% in Chrome 2 and 3% in Chrome 3

{F Chrome 2 "R T 10%, 7 Chrome 3 LT 3%

As an illustration, here's a partial code listing for generating the table using element.cloneNode():

— Ao, XIS element.cloneNode() 81 2 #7045

function tableClonedDOM() {

var i, table, thead, tbody, tr, th, td, a, ul, Ii,

oth = document.createElement('th'),

otd = document.createElement('td"),

otr = document.createElement('tr'),

oa = document.createElement('a’),

oli = document.createElement('li'),

oul = document.createElement('ul');

tbody = document.createElement('tbody");

for (i=1;1<=1000; i++) {
tr = otr.cloneNode(false);
td = otd.cloneNode(false);
td.appendChild(document.createTextNode((i % 2) ? 'yes' : 'no'));
tr.appendChild(td);
td = otd.cloneNode(false);
td.appendChild(document.createTextNode(i));
tr.appendChild(td);

td = otd.cloneNode(false);

td.appendChild(document.createTextNode('my name is #' + 1));
tr.appendChild(td);
// ... the rest of the loop ...

H

// ... the rest of the table generation ...

-

HTML Collections HTML &4

HTML collections are array-like objects containing DOM node references. Examples of collections are the

values returned by the following methods:
HTML 52 1 TA78 DOM 5 105 N HIEEAN % . T AIREURIR s 2 —MES

* document.getElementsByName()
* document.getElementsByClassName()

* document.getElementsByTagName 1()
The following properties also return HTML collections:
PoE Tt s+ HTML 2245

document.images

All img elements on the page
T T TC 3R

document.links

All a elements
T <a>Jt 5

document.forms

All forms

AT 2K 5

document.forms[0].elements

All fields in the first form on the page

TP AR P T B

These methods and properties return HTMLCollection objects, which are array-like lists. They are not arrays
(because they don't have methods such as push() or slice()), but provide a length property just like arrays and
allow indexed access to the elements in the list. For example, document.images[1] returns the second element in
the collection. As defined in the DOM standard, HTML collections are "assumed to be live, meaning that they are
automatically updated when the underlying document is updated"

(seehttp://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-75708506).

XU VLA LR [B] HTMLCollection %%, & — RSB 5K . EATAREA (B EATERA
Wl push()aX slice():2 M T7¥E) AHIZHRAE T —A length J& 7, R —FEOR AT LA 2 5107 1 51 % H (1)
JGF . P, document.images[1TIR [FIFEEHIZE AN Jus . IR DOM drdErb s SCARF:, HTML 4545
s NRBIMTAE, EUWAE SRR SR BRI, TR B R (S

http://www.w3.0org/TR/DOM-Level-2-HTML/htmL.htmI#ID-75708506)

The HTML collections are in fact queries against the document, and these queries are being reexecuted every
time you need up-to-date information, such as the number of elements in the collection (i.e., the collection's

length). This could be a source of inefficiencies.

HTML ££6 52 fp EAEB SO, S ORRUE R B, R S R AT IXM B . Bilin e e & oo
FIHE (BB REAT length) o IXIERARBCR IR .

Expensive collections &5t HI4E &

To demonstrate that the collections are live, consider the following snippet:

RS IAAEYE, 518 N SRS BL:

// an accidentally infinite loop
var alldivs = document.getElementsByTagName r('div');
for (var i = 0; 1 < alldivs.length; i++) {

document.body.appendChild(document.createElement('div'))

This code looks like it simply doubles the number of div elements on the page. It loops through the existing
divs and creates a new div every time, appending it to the body. But this is in fact an infinite loop because the
loop's exit condition, alldivs.length, increases by one with every iteration, reflecting the current state of the

underlying document.

XA b S U T s A5 3 7 o b div s G . e I div, BRROE—ANETT div IR
hiE] body bifie (HSZFR FIXEANSEIEI, RO EIRZE 11454 alldivs.length fERFIGERH# S N, & &
B LR RS2 ORI A IR A

Looping through HTML collections like this may lead to logic mistakes, but it's also slower, due to the fact

that the query needs to run on every iteration (see Figure 3-4).

G KR 7] HTML 2264 S 8028 aHR, i HABRE, FOYRRREAREEAT &0 (i 3-4) .

200 4 19
150 4
H s
100
,§ 9
S8
5“_
o ﬁ’m%%hg ﬁlﬂlgﬁ
@k-'u a0
K& F LS

Figure 3-4. Looping over an array is significantly faster than looping through an HTML collection of the same

size and content

K 3-4 3t DA W AR T IR/ RT 2R (1 HTML 5645

As discussed in Chapter 4, accessing an array's length property in loop control conditions is not recommended.
Accessing a collection's length is even slower than accessing a regular array's length because it means rerunning
the query every time. This is demonstrated by the following example, which takes a collection coll, copies it into

an array arr, and then compares how much time it takes to iterate through each.

IEANPESE DY T o ZERIR Y, AN ER DU S length J& PEAIGER FIWT 4647 o Vs] 825 1¥) length L A4 1Y
length i 248, PN E EWRERFREE e alid i £ N mfel 4, f—DEES coll #% N 24l
arr "1, SR PLBCRE UGS AT K IR TA] o

Consider a function that copies an HTML collection into a regular array:
HRBIXAREL e HTML $54 NS — A5 A -

function toArray(coll) {
for (var i =0, a =[], len = coll.length; i < len; i++) {

a[i] = coll[i];

return a;

And setting up a collection and a copy of it into an array:
BWEAMES, JHEEHE BN

var coll = document.getElementsByTagName r('div');

var ar = toArray(coll);
The two functions to compare would be:

ELAE T 21 A b KL

/Islower
function loopCollection() {

for (var count = 0; count < coll.length; count++) {

}
// faster

function loopCopiedArray() {

for (var count = 0; count < arr.length; count++) {

-

When the length of the collection is accessed on every iteration, it causes the collection to be updated and has
a significant performance penalty across all browsers. The way to optimize this is to simply cache the length of

the collection into a variable and use this variable to compare in the loop's exit condition:

ARG RE VT M AR A1 Tength JE PRI, & FEERG A HBr, RPN s B BN KV BB
Ko MALHIIPZARMI R, HERARG T length BYEZEAF 2] — AR, SRJGAEEM AT 26 AF A AR A 42

=

H:

function loopCacheLengthCollection() {
var coll = document.getElementsByTagName r('div'),
len = coll.length;

for (var count = 0; count < len; count++) {

-

This function will run about as fast as loopCopiedArray().

WA E2 1743 loopCopiedArray()—FEHR

For many use cases that require a single loop over a relatively small collection, just caching the length of the
collection is good enough. But looping over an array is faster that looping over a collection, so if the elements of
the collection are copied into an array first, accessing their properties is faster. Keep in mind that this comes at the
price of an extra step and another loop over the collection, so it's important to profile and decide whether using an

array copy will be beneficial in your specific case.

VFZ U ER — AR NMEG BT, N 20K length 2247 — FAUCWAF 1o (H i) B L it [
AP, WA G CHE P VB, Ui eI R R iR e X T NN IR, B
e, PTUAN PG RS E 251 M FRE— MR R AR 1547 2

/|

Consult the function toArray() shown earlier for an example of a generic collection-to-array function.

HiJ T 52 2 (1 toArray () bR 5T A Ay 5 N8 A 4R 15 e Bl pa K

Local variables when accessing collection elements 15 [H4& o & B #] R L &

The previous example used just an empty loop, but what happens when the elements of the collection are

accessed within the loop?

RG] T DRI, QORI T AR GO0, SR A

In general, for any type of DOM access it's best to use a local variable when the same DOM property or
method is accessed more than once. When looping over a collection, the first optimization is to store the collection
in a local variable and cache the length outside the loop, and then use a local variable inside the loop for elements

that are accessed more than once.

R, R TAEMTZRAL) DOM Vi, AR A —> DOM J& ML sl ikl i) — kLA b, Sl A —A4
JAHRAZ G AF I DOM & 5o i NEG, MU R RS TSI I E i TR R, JREMA L
HNEAT length J&PE. ARIG, WUERAEEIMATH Z U7) [/ —MEGICER, AR AR #2247 .

In the next example, three properties of each element are accessed within the loop. The slowest version

accesses the global document every time, an optimized version caches a reference to the collection, and the fastest

version also stores the current element of the collection into a variable. All three versions cache the length of the

collection.

FE N7, FERRIA U R A TR I = A e SR8 A RRA RS EE)) 42 R) document, R
IR IRAZEAr T — MRS RG], SRRACK A G S AT CRAAN R AR . T = MR # 22
17 THA 1) length JE T

/I slow
function collectionGlobal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =",
for (var count = 0; count < len; count++) {
name = document.getElementsByTagName r('div')[count].nodeName;
name = document.getElementsByTagName r('div')[count].nodeType;
name = document.getElementsByTagName r('div')[count].tagName;
H
return name;
¥
// faster
function collectionLocal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =",
for (var count = 0; count < len; count++) {
name = coll[count].nodeName;
name = coll[count].nodeType;
name = coll[count].tagName;

}

return name;

}5
// fastest
function collectionNodesLocal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =",
el = null;
for (var count = 0; count < len; count++) {
el = coll[count];
name = el.nodeName;
name = el.nodeType;
name = el.tagName;

}

return name;

)

Figure 3-5 shows the benefits of optimizing collection loops. The first bar plots how many times faster it is to
access the collection through a local reference, and the second bar shows that there's additional benefit to caching

collection items when they are accessed multiple times.

Bl 3-5 R TSRS IR S Ak 28— 2 AT B IEIbn 1 Sy B 5 | T U7 IR SR 5 i R IR LR T, 20 4%
FETE B s 28 VR i I 8 o4 £ 0T R IR L AR T T

350 £
m- =
250 & -
22001 £
§ 150
100
S&- el el - o] h:# = = =
24 £5 22 28 23 2% Fn B2
0 E T e T e K T a T A P T
e q@“‘“’;@@"ﬁﬁ' & ﬁ"k &

Figure 3-5. Benefit of using local variables to store references to a collection and its elements during loops

3-5 FEARI P AL R AR B O A e B 5 FEREE B o0 20 R I T B 3R T

Walking the DOM DOM &%

The DOM API provides multiple avenues to access specific parts of the overall document structure. In cases

when you can choose between approaches, it's beneficial to use the most efficient API for a specific job.

DOM API $244t 1 2 Fhige 405 o) A SCRI S5 R (AR 58 00 o MARAE 2 P T AT I3 i IR REATRE PRI, ey

BT E 5 IR B b5 A) AP
Crawling the DOM #lEX DOM

Often you need to start from a DOM element and work with the surrounding elements, maybe recursively

iterating over all children. You can do so by using the childNodes collection or by getting each element's sibling

using nextSibling.

IRZE T T B> DOM JUEIT UG, #8154 [l K 0 38, sl 3 B AT K149 1 AR 7T AEA] childNode

=

SR04 8 nextSibling FRAFEEAN JC R 0T 20 15 .

Consider these two equivalent approaches to a nonrecursive visit of an element's children:

RS FIRE DD REII B 1, SR ARIE Y5 2 — A o3 1 519 i

function testNextSibling() {
var el = document.getElementByld('mydiv'),
ch = el firstChild,
name =",
do {
name = ch.nodeName;
} while (ch = ch.nextSibling);
return name;
I8
function testChildNodes() {
var el = document.getElementByld('mydiv'),
ch = el.childNodes,
len = ch.length,
name =",
for (var count = 0; count < len; count++) {
name = ch[count].nodeName;

}

return name;

55

Bear in mind that childNodes is a collection and should be approached carefully, caching the length in loops

so it's not updated on every iteration.
idfE, childNodes #& —MER, Z/NOALEE, FEMEIATLEAT length J& LT A SAERERIE A T

The two approaches are mostly equal in terms of execution time across browsers. But in IE, nextSibling
performs much better than childNodes. In IE6, nextSibling is 16 times faster, and in IE7 it's 105 times faster.
Given these results, using nextSibling is the preferred method of crawling the DOM in older IE versions in

performance-critical cases. In all other cases, it's mostly a question of personal and team preference.

FEANED S by PRI VA IS AT I (R BEACAH S . (HZAE TE 1, nextSibling R ILAFLL childNode 47
7t IE6 11, nextSibling L TR 16 £, 1TI4E IE7 HPHRUR 105 £, BT XEEER, {221 IE th kg™ i)
fEFHZAT N, H nextSibling UL DOM J& H ik J5ik. EHALTOLT, FZHEAN N LT .

Element nodes JTZE 715

DOM properties such as childNodes, firstChild, and nextSibling don't distinguish between element nodes
and other node types, such as comments and text nodes (which are often just spaces between two tags). In many
cases, only the element nodes need to be accessed, so in a loop it's likely that the code needs to check the type of

node returned and filter out nonelement nodes. This type checking and filtering is unnecessary DOM work.

DOM J& % U childNode, firstChild, F1 nextSibling ANX 437G 25 11 A AIARSS R A, dny e 1 s A1 S
AT R OXPIAREZ AR R — 204 o EVF2AIEOLT, HAJuE AT Eyvin, P efgid,
ARSI 2250 70 R [R AT RS A, I DB HHARJCER T Al XLk AR JE AR S AN EE) DOM #2145 .

Many modern browsers offer APIs that only return element nodes. It's better to use those when available,
because they'll be faster than if you do the filtering yourself in JavaScript. Table 3-1 lists those convenient DOM

properties.

VFZ IR 2420 T APT R R [0 T il Sy F s Rk, ROy e TR H 2
JavaScript 5 R JE A EE . 3K 3-1 F1 X EEITR] () DOM & 1.

Table 3-1. DOM properties that distinguish element nodes (HTML tags) versus all nodes

X 3-1 HERICET SN0 DOM @M (HTML A28 R w7 dim g8 vk

Property Use as a replacement for
children childNodes
childElementCount childNodes.length
firstElementChild firstChild
lastElementChild lastChild
nextElementSibling nextSibling

previousElementSibling previousSibling

All of the properties listed in Table 3-1 are supported as of Firefox 3.5, Safari 4, Chrome 2, and Opera 9.62.

Of these properties, IE versions 6, 7, and 8 only support children.

X 3-1 H A BT 8 PEREW 4 Firefox 3.5, Safari4, Chrome 2, Fl Opera 9.62 SC¥f. Fraixie)gE it

IE6, 7, 8 M 3%F children.

Looping over children instead of childNodes is faster because there are usually less items to loop over.
Whitespaces in the HTML source code are actually text nodes, and they are not included in the children
collection. children is faster than childNodes across all browsers, although usually not by a big margin—1.5 to 3
times faster. One notable exception is IE, where iterating over the children collection is significantly faster than

iterating over childNodes—24 times faster in IE6 and 124 times faster in IE7.

i1 children H childNodes SR, PEIG4ESI0 8 /b, HTML Y564 90 (a8 k& Sz b b Jg AR AL B,
¥E1E children B4 . {EFTA W 25 children Lt childNodes B, EARZERIA R AR, WH R 1.5 53

%, R MEASE RS IE, #8/)F children B SR T3k 77 childNodes {EIE6 R 24 1%, {EIE7 ik 124

e
(N7,
T o

The Selectors APl #%&3#%5% API

When identifying the elements in the DOM to work with, developers often need finer control than methods
such as getElementByld() and getElementsByTagName() can provide. Sometimes you combine these calls and
iterate over the returned nodes in order to get to the list of elements you need, but this refinement process can

become inefficient.

Pl DOM "R IJTeENy, TFACE 4 5 2SR 40], 1 A2 getElementByld() A
getElementsByTagName r()Z S pREL. I IR G5 G X L8 s A0 H IR IE AR AR RIS 22, DOREUIT
WENTCER, X R R A] B SCRAR T

On the other hand, using CSS selectors is a convenient way to identify nodes because developers are already
familiar with CSS. Many JavaScript libraries have provided APIs for that purpose, and now recent browser
versions provide a method called querySelectorAll() as a native browser DOM method. Naturally this approach

is faster than using JavaScript and DOM to iterate and narrow down a list of elements.

Fy—J71h, AR CSS s — MESERITE W%, BV FRE CEX CSSIRAE T . F%
JavaScript 54 A2 AL T APL, 10 H08 B3 A 42 1 T — 444 querySelector AL J5 A4 i W 4 DOM kR
Hro BARIXPH 7k AT JavaScript Al DOM JEAR 46 /NG Z 43R (K5 2P

Consider the following:

18T A .

var elements = document.querySelectorAll('#menu a');

The value of elements will contain a list of references to all a elements found inside an element with
id=""menu"". The method querySelectorAll() takes a CSS selector string as an argument and returns a
NodeList—an array-like object containing matching nodes. The method doesn't return an HTML collection, so
the returned nodes do not represent the live structure of the document. This avoids the performance (and

potentially logic) issues with HTML collection discussed previously in this chapter.

elements MECRH & — NGB, FRIIBLE HAT id="menu" B CE . FREL querySelectorAlI() K
—> CSS P2 74 H ZHOIFIR [Pl —A NodeList—— H 4574 41 10 R0 e i 2R304l 0 5 o 1 ok AN IR (1]
HTML 84, B LR [SO RIS I AF R 4507 o X il S 7 AT /7 i 42 2 1% HTML 486 Fr il 1

AUPERE R L (LU TEAERIZ A RED

To achieve the same goal as the preceding code without using querySelectorAll(), you will need the more

verbose:

WHRAMEH querySelectorAll(), X F[FAER HARIACIE &0 KL,

var elements = document.getElementByld(‘'menu').getElementsByTagName r('a');

In this case elements will be an HTML collection, so you'll also need to copy it into an array if you want the

exact same type of static list as returned by querySelectorAll().

XA T elements K2 — A HTML 225, Jr DUMRIEF 208 &85 IR — 84l WRARAER 21

querySelectorAll() [1) 36 [HI S 7Y (1) 17

Using querySelectorAll() is even more convenient when you need to work with a union of several queries.
For example, if the page has some div elements with a class name of "warning" and some with a class of "notice",

to get a list of all of them you can use querySelectorAll():

MR EECS AHI, f#H querySelector AL SE INAER] . 121, 42 it i+ £ div ST class 2 FRAE

"warning", 7 —££ class 4 &"notice", KA LA querySelectorAll()— R IR 1FIX YT 15

var errs = document.querySelectorAll('div.warning, div.notice');

Getting the same list without querySelectorAll() is considerably more work. One way is to select all div

elements and iterate through them to filter out the ones you don't need.

WERAMEH querySelectorAll(), FRAFFFESIFR T LT 2 TAE, —ANIMEZIEFIAN div o, ARGl
I AR A o 98 B LA TR B T

var errs =[],

divs = document.getElementsByTagName_r('div'),

classname =";

for (var i =0, len = divs.length; i <len; i++) {
classname = divs[i].className;

if (classname === 'notice' || classname === 'warning') {

errs.push(divs[i]);

Comparing the two pieces of code shows that using the Selectors API is 2 to 6 times faster across browsers

(Figure 3-6).

ELAs ik g B ACAY, Af FHEFE2% APT LU Tk T 2~6 f5 (8] 3-6)

6,06

5 o 1|m

3E5X 3 any

Times faster

246x

u T

CES PSS

Figure 3-6. The benefit of using the Selectors API over iterating instead of the results of

getElementsByTagName 1()

K 3-6 Al kS APT A getElementsByTagName r()f1H4:GEXT L

The Selectors API is supported natively in browsers as of these versions: Internet Explorer

8, Firefox 3.5, Safari 3.1, Chrome 1, and Opera 10.

A RS SCRFIE RS APL: Internet Explorer 8, Firefox 3.5, Safari 3.1, Chrome 1, Opera 10

As the results in the figure show, it's a good idea to check for support for document.querySelectorAll() and
use it when available. Also, if you're using a selector API provided by a JavaScript library, make sure the library

uses the native API under the hood. If not, you probably just need to upgrade the library version.

E TN A R FIIEE, G R Y28 S HF document.querySelectorAll(), HSA f i FHE . an AR
JavaScript FEFTHEAERIEFEAS APL, BN — NMIZZE sl T A 77k . WA, IR 22Kt E Tt
&P N

You can also take advantage of another method called querySelector(), a convenient

method that returns only the first node matched by the query.

PRIETTELA TS — A BRI E querySelector()3k o, 3K M IR bR B R [R195 5 2) A (20— AN 19 5

These two methods are properties of the DOM nodes, so you can use document.querySelector(*.myclass") to
query nodes in the whole document, or you can query a subtree using elref.querySelector(*.myclass’), where

elref is a reference to a DOM element.

XN RS 2 DOM 15 55 g e, B AR AT BAE H document.querySelector('.myclass') K 25 Hi AN SC#Y

HRIRT R, B AT elref.querySelector(.myclass')7E 1 th it AT 20 i), JLrp elref /& —/> DOM Je# 151 .

Repaints and Reflows E£FEHR

Once the browser has downloaded all the components of a page—HTML markup, JavaScript, CSS,

images—it parses through the files and creates two internal data structures:

RS AT UL HTML i, JavaScript, CSS, B Z G, e SR IEGIEEPIAN N8

2 :

A DOM tree

A representation of the page structure
—#{ DOM
ENAINES]

A render tree

A representation of how the DOM nodes will be displayed
0 SiEE
7~ DOM 15 s U] {27

The render tree has at least one node for every node of the DOM tree that needs to be displayed (hidden DOM
elements don't have a corresponding node in the render tree). Nodes in the render tree are called frames or boxes
in accordance with the CSS model that treats page elements as boxes with padding, margins, borders, and position.

Once the DOM and the render trees are constructed, the browser can display ("paint") the elements on the page.

T O REAS T 2878 1) DOM AT i A7 R D — AN s (B0 DOM. JG 3 AETE G Hh B X R
MO o VYR LI RO HE B R, FEA CSS BN E X, KM R A E AN A, U,
WHEMALE) fL. — H DOM MANERMIIEEE, WA sl LU (2R B LRI 7.

When a DOM change affects the geometry of an element (width and height)—such as a change in the
thickness of the border or adding more text to a paragraph, resulting in an additional line—the browser needs to
recalculate the geometry of the element as well as the geometry and position of other elements that could have
been affected by the change. The browser invalidates the part of the render tree that was affected by the change
and reconstructs the render tree. This process is known as a reflow. Once the reflow is complete, the browser

redraws the affected parts of the screen in a process called repaint.

1 DOM US4 B0 K LT e e CSEAtsy) ——@linekde 1 I HE 56 B slAE BO rRmnscss, Rk A
— R Ja S —— A T EHT U HOC R A LT JE e, i Bl e LA R AR 2 PR e e
SRR o VLA LA B2 BISEMA K FE > R, AR MG o XA IR AR . EERAR S
BN, 0 B AE AN F e MR o R 2 I B LSS R

Not all DOM changes affect the geometry. For example, changing the background color of an element won't
change its width or height. In this case, there is a repaint only (no reflow), because the layout of the element hasn't

changed.

ASEPTA) DOM A2 5 M JLAT e PE e B, So Ao T s O AN S5 e i) 06 1 B
FERRFGOL Y, R EES CRFREEHRO BT R R 3 5.

Repaints and reflows are expensive operations and can make the UI of a web application less responsive. As

such, it's important to reduce their occurrences whenever possible.

H 22 I HERSOE SR AR (A, W RE S B TN AT L SR AN e BT L, 20 e B AT RE DK
IR KA

When Does a Reflow Happen? EHHRK & &k4AMH 42

As mentioned earlier, a reflow is needed whenever layout and geometry change. This happens when:

IEAMRTTT 5 200, A0 Jay A LA SR I 5 ZE AR . 72 R B b 2 A R F R
* Visible DOM elements are added or removed
SIS ER AT LK) DOM JE 3
* Elements change position
TCER AL E SR
* Elements change size (because of a change in margin, padding, border thickness, width, height, etc.)
TR ST AR (RGeS, AHERE, S, mfEas)m s
* Content is changed, e.g., text changes or an image is replaced with one of a different size
WA, B, SCARSAREE B 5 — AN R T AR
* Page renders initially
= ZIDNTREES
* Browser window is resized
D) v 7 TSR R

Depending on the nature of the change, a smaller or bigger part of the render tree needs to be recalculated.

Some changes may cause a reflow of the whole page: for example, when a scroll bar appears.

MRYE ARV, TG BRI e DR U A e A n] P ECE HE AR AN I i,
ARG B

Queuing and Flushing Render Tree Changes 2%] Jf:Fill5ia Je i o 4e

Because of the computation costs associated with each reflow, most browsers optimize the reflow process by

queuing changes and performing them in batches. However, you may (often involuntarily) force the queue to be

flushed and require that all scheduled changes be applied right away. Flushing the queue happens when you want

to retrieve layout information, which means using any of the following:

PR v SRR A 06, K2 B Va8 A B A G ORIt & SR IR HE RO AR . AR, AR T
AE (2% ANl B D 9maa BA A RHT 2R B A v S SO K 7 SN T o SRERA R A5 S R A4 3 S0
BIASIENATE, KRR TR X L5V

- offsetTop, offsetLeft, offsetWidth, offsetHeight
« scrollTop, scrollLeft, scrollWidth, scrollHeight
« clientTop, clientLeft, clientWidth, clientHeight

» getComputedStyle() (currentStyle in IE) (7€ IE "t & H0FR M currentStyle)

The layout information returned by these properties and methods needs to be up to date, and so the browser

has to execute the pending changes in the rendering queue and reflow in order to return the correct values.

A Je A5 S X L e MR IR B e BT Bt BT LI S s AN ANZATIE Qe A P A 532 R 30T H O 50T HE
FR L3R 0] 1 4 O A

During the process of changing styles, it's best not to use any of the properties shown in the preceding list. All
of these will flush the render queue, even in cases where you're retrieving layout information that wasn't recently

changed or isn't even relevant to the latest changes.

FEAE RS IR RE R, SR AN AT AT I 47 EH RIS S J I o AT AT — N) HORE B FTE G BAS Y, RIMEAR IE
FEAREUS L 53T AR e P S [B 5 o IR e B T R A R

Consider the following example of changing the same style property three times (this is probably not

something you'll see in real code, but is an isolated illustration of an important topic):

BN XA 5, B SRR AN S B P =R G VFASZARAEZLIE ARSI W2, AN & a7
MR AN BN

// setting and retrieving styles in succession

var computed,

tmp =",
bodystyle = document.body.style;
if (document.body.currentStyle) { // IE, Opera
computed = document.body.currentStyle;
}else {// W3C
computed = document.defaultView.getComputedStyle(document.body, ");
H
// inefficient way of modifying the same property
// and retrieving style information right after
bodystyle.color = 'red';
tmp = computed.backgroundColor;
bodystyle.color = 'white';
tmp = computed.backgroundlmage;
bodystyle.color = 'green';

tmp = computed.backgroundAttachment;

In this example, the foreground color of the body element is being changed three times, and after every change,
a computed style property is retrieved. The retrieved properties—backgroundColor, backgroundIimage, and
backgroundAttachment—are unrelated to the color being changed. Yet the browser needs to flush the render

queue and reflow due to the fact that a computed style property was requested.

TEIXAMII T, body JTCER IR SO T =k, BRI Z)G, #F A computed [XFE . FANE
% backgroundColor, backgroundImage, I backgroundAttachment 5 AR T, AR, 9 Wi &% 7 22kl 8

TP AB I HER, FI2h computed (¥ XU 4 21T 51 % -

A Dbetter approach than this inefficient example is to never request layout information while it's being changed.

If the computed style retrieval is moved to the end, the code looks like this:

LKA A YRR (K1) 5 A (K VA R A B AT R (e B SR I B e . AR &) computed XU RIACHY
WRIARRE, ARSE AKX AHFE T

bodystyle.color = 'red’;
bodystyle.color = 'white';
bodystyle.color = 'green';

tmp = computed.backgroundColor;
tmp = computed.backgroundlmage;

tmp = computed.backgroundAttachment;

The second example will be faster across all browsers, as seen in Figure 3-7.

FEFTAT RN b, S8 AN R, A 3-7 R

6-.
527

5_

4 4
g 3 LI 5 cer 254
[y 2.3[

2 183 18T 1.9

from ﬁ 1.05%

@h @ Ty

Figure 3-7. Benefit of preventing reflows by delaying access to layout information

W 3-7 JE I AR Uy) A1 JR A S G S HE RS A R K P RE SR T T

Minimizing Repaints and Reflows #&/MbEL A EHEARK

Reflows and repaints can be expensive, and therefore a good strategy for responsive applications is to reduce
their number. In order to minimize this number, you should combine multiple DOM and style changes into a batch

and apply them once.

FHRRNE A B 5L, FrLA, S Re 3 i NS — N SR sl D LR A A A L2 o Dl e
OB URINZAS 21> DOM. RIRURS S22 & 0 21— M b — R T

Style changes (3% b

Consider this example:

L& IXABI T

var el = document.getElementByld('mydiv');
el.style.borderLeft = '1px";
el.style.borderRight = "2px’;

el.style.padding = '5px’;

Here there are three style properties being changed, each of them affecting the geometry of the element. In the
worst case, this will cause the browser to reflow three times. Most modern browsers optimize for such cases and
reflow only once, but it can still be inefficient in older browsers or if there's a separate asynchronous process
happening at the same time (i.e., using a timer). If other code is requesting layout information while this code is

running, it could cause up to three reflows. Also, the code is touching the DOM four times and can be optimized.

XILSAR T =AW R, BRXSCE AR R0 R I LT E . AEIRXSHPRE 6, & 3 80 WA
R T =K. KRZHIUCHEREAL T IXF RO BT — IR R, (R AE 2 g b, s AT —

S EIELD R (B T ANERTESD R ME T o WA AR I B IE AT I 2 Al
JafE R, B SSERE A R A mH, AT DOM DUk, il At

A more efficient way to achieve the same result is to combine all the changes and apply them at once,

modifying the DOM only once. This can be done using the cssText property:

MBI FRERCR MR B A BT SRS IRE AT, B DOM . Al i A]

cssText Jm P52 :

var el = document.getElementByld('mydiv');

el.style.cssText = 'border-left: 1px; border-right: 2px; padding: 5px;';

Modifying the cssText property as shown in the example overwrites existing style information, so if you want

to keep the existing styles, you can append this to the cssText string:

KA 7 BAREAE S cssText J& P, B CATAENIXURSAE B o WERARIT SLOREF 1T (K Uk, 4wl LORE
B HHINAE essText 45 HR 1K S 1HI

el.style.cssText +="; border-left: 1px;';

Another way to apply style changes only once is to change the CSS class name instead of changing the inline
styles. This approach is applicable in cases when the styles do not depend on runtime logic and calculations.
Changing the CSS class name is cleaner and more maintainable; it helps keep your scripts free of presentation
code, although it might come with a slight performance hit because the cascade needs to be checked when

changing classes.

A RS RS I IR 1B 25 CSS IRZRARR, AR BT IR XA AS . IX 7 idad T L8
WA AT I8 AT 2%, ATEIFR L. S CSS RARREVEMT, o T4ed: B TORFFIA 4
PR AU, BARE R RER ORI TEREpi ey, DRl ARSI iy EE A A I

var el = document.getElementByld('mydiv');

el.className = 'active';

Batching DOM changes #t&&% DOM

When you have a number of changes to apply to a DOM element, you can reduce the number of repaints and

reflows by following these steps:

R EX DOM TG R BEAT 2 UAB U, AR T LU I LA 20 B/ 5 2 A0 S HERR R K

1. Take the element off of the document flow.

MR R 1% 00 %

2. Apply multiple changes.

XN 22 AR

3. Bring the element back to the document.

e S HEIBE SE

This process causes two reflows—one at step 1 and one at step 3. If you omit those steps, every change you

make in step 2 could cause its own reflows.

PO RE G DR PHIR EEHER ——— 2 51—k, =051k — K WERAIR NS TIPSR, A 0
HRRE IR SR AR 51 8 IR HERR o

There are three basic ways to modify the DOM off the document:

A =FhEEATVE AT LR DOM A SCAS R 47 B -

* Hide the element, apply changes, and show it again.

s, TG R HERE.

¢ Use a document fragment to build a subtree outside of the live DOM and then copy it to the document.

P N SOM P WHAE A DOM Z AN —A> 78, SRR E#E DRSO

* Copy the original element into an off-document node, modify the copy, and then replace the original element

once you're done.

R Jsdn oo 2545 VLB AR SO 5 mh, B EElA, REE AT

To illustrate the off-document manipulations, consider a list of links that must be updated with more

information:

7R I SR A, 2 B — MRS, AL AR B 2 A S B ST

<ul id="mylist">

Stoyan

Julien

Suppose additional data, already contained in an object, needs to be inserted into this list. The data is defined

as:

B I A e DXTRT T, TEERASIX AR o XL g LAk

var data = [
{
"name": "Nicholas",
"url": "http://nczonline.net"
2
{

"name": "Ross",

"url": "http://techfoolery.com"

The following is a generic function to update a given node with new data:

MR ANE A RO SO SR 2R Y R

function appendDataToElement(appendToElement, data) {

var a, li;

for (var i = 0, max = data.length; i < max; i++) {
a = document.createElement('a’);
a.href = data[i].url;
a.appendChild(document.createTextNode(data[i].name));
li = document.createElement('li");
li.appendChild(a);

appendToElement.appendChild(li);

—

The most obvious way to update the list with the data without worrying about reflows would be the following:

el S0P R pRANE B L, W AR

var ul = document.getElementByld('mylist');

appendDataToElement(ul, data);

Using this approach, however, every new entry from the data array will be appended to the live DOM tree and
cause a reflow. As discussed previously, one way to reduce reflows is to temporarily remove the element

from the document flow by changing the display property and then revert it:

FEFHIXAN T3k, AR, data BASI_ERIREASHT 2% BN 2] DOM W2 G ECEHRIR . Wi prishig i i1,
Il FELHERR) — AN AR B I 0 display JEPE, I A SCRS R BRTe s R KR E .

var ul = document.getElementByld('mylist');
ul.style.display = 'none';
appendDataToElement(ul, data);

ul.style.display = 'block’;

Another way to minimize the number of reflows is to create and update a document fragment, completely off
the document, and then append it to the original list. A document fragment is a lightweight version of the
document object, and it's designed to help with exactly this type of task—updating and moving nodes around.
One syntactically convenient feature of the document fragments is that when you append a fragment to a node, the
fragment's children actually get appended, not the fragment itself. The following solution takes one less line of

code, causes only one reflow, and touches the live DOM only once:

o P FHERR) 0o s AE SO Z AN I SRS SCRE T, SRR R E AR SR a6 41K
SCRR W2 — MR document XT5, ERBT LI T B, B SRS SRR W — M8
A RTETRIRF A 2R 0 R BN TN SRR R SOR P 1) 59 i, A2 i e R
(7> — AT, RSk —IREHR, il A7 £ DOM™ XK.

var fragment = document.createDocumentFragment();
appendDataToElement(fragment, data);

document.getElementByld('mylist').appendChild(fragment);

A third solution would be to create a copy of the node you want to update, work on the copy, and then, once

you're done, replace the old node with the newly updated copy:
S =R A B S Y R RIS, RIS ERIAR B,)n AU R R R

var old = document.getElementByld('mylist');
var clone = old.cloneNode(true);
appendDataToElement(clone, data);

old.parentNode.replaceChild(clone, old);

The recommendation is to use document fragments (the second solution) whenever possible because they
involve the least amount of DOM manipulations and reflows. The only potential drawback is that the practice of
using document fragments is currently underused and some team members may not be familiar with the

technique.

AP BEAE T SCR P 7 2 Ml ek 7 580 DRUOA B Kot /D B (¥ DOM. $RAE R HERR . ME— I AE 1
AL, RSO AR R R R AL, TFRE P REAN BB IE RO .

Caching Layout Information ZE##hR1E R

As already mentioned, browsers try to minimize the number of reflows by queuing changes and executing
them in batches. But when you request layout information such as offsets, scroll values, or computed style values,
the browser flushes the queue and applies all the changes in order to return the updated value. It is best to
minimize the number of requests for layout information, and when you do request it, assign it to local variables

and work with the local values.

D] 58 s 3 1 AS IS St s AT AT i, R T HE RO MRS A R B iR R L IR BN 4%
FrE, B R PRI, SRR\ S FRAT AT B S AE, LR BB R . Sl 2 SRR D X A Jy
SEERRE, AR EIRg R AR, SRR ES ST,

Consider an example of moving an element myElement diagonally, one pixel at a time, starting from position

100 x 100px and ending at 500 x 500px. In the body of a timeout loop you could use:

Z & — M1, 0 E myElement [W A7 F 5 W, BER—MEER, IR LG T 100x100 A7, 45T 500x500
frE, 7F timeout fEEAAH R 0] LA

// inefficient

myElement.style.left = 1 + myElement.offsetLeft + 'px';
myElement.style.top = 1 + myElement.offsetTop + 'px';
if (myElement.offsetLeft >= 500) {

stopAnimation();

—

This is not efficient, though, because every time the element moves, the code requests the offset values,
causing the browser to flush the rendering queue and not benefit from its optimizations. A better way to do the
same thing is to take the start value position once and assign it to a variable such as var current =
myElement.offsetLeft;. Then, inside of the animation loop, work with the current variable and don't request

offsets:

XAEMARBERCE, A RRR G ER), RS E MRS R, SR ELRETE B, FE8E MLk
TN INER TSR G AL B IR, e AR EH var current = myElement.offsetLeft;. #X

o
Ji, AEshmfEA G, A current A8 &= 1 A A IR & -

current++
myElement.style.left = current + 'px';
myElement.style.top = current + 'px';

if (current >= 500) {

stopAnimation();

-~

Take Elements Out of the Flow for Animations ¥t ZR HshmEfi

Showing and hiding parts of a page in an expand/collapse manner is a common interaction pattern. It often

includes geometry animation of the area being expanded, which pushes down the rest of the content on the page.

A7 B S 73 DT A RS T /4T B i i — b iy ML A2 B 0l e A4 DXy KK LA sl g
I FCA 2 HE 1R 5

Reflows sometimes affect only a small part of the render tree, but they can affect a larger portion, or even the
whole tree. The less the browser needs to reflow, the more responsive your application will be. So when an
animation at the top of the page pushes down almost the whole page, this will cause a big reflow and can be
expensive, appearing choppy to the user. The more nodes in the render tree that need recalculation, the worse it

becomes.

HLHERRAT I S W G (10— N BRSBTS DASE MR — 870, EEA AR R G o D Ui e o 2 A
PR ERTE BN, 2 R P (10 i S T Rt et o BT A2 — S DT AR R sl AS 1 25 AN 2 AN DI, K5
KBRS EN A, A RIS R, G 1R 2 JOT R B o A, RS R

A technique to avoid a reflow of a big part of the page is to use the following steps:
AT LA 20 R AT LA G on) K8 20 BT 3EA T S AR

1. Use absolute positioning for the element you want to animate on the page, taking it out of the layout flow of

the page.

(B AR AP RS A SR AU 1 E TS OB P L o A VAN 1 R Y

2. Animate the element. When it expands, it will temporarily cover part of the page. This is a repaint, but only of a

small part of the page instead of a reflow and repaint of a big page chunk.

JABICE B . YR, BN A A U X AR, E IS G g,

G EEHERROF E 2 — KR T

3. When the animation is done, restore the positioning, thereby pushing down the rest of the document only once.

S ARIN, FOFERL, TR RN R SO AR G R A

PEHVE: OB LLAL T AL, RN IX =P B AR AT -

| I TR LR D ST 70 0 v 8 B T S AR 2D A LY DL) A ER VA I 11D ANG 65

ANCHERS U A TR AL, i R A e AT ER .

2. RITEE RAEShmye R Lk AT o RN IHA TR AR I B A, Her) b, ooz I o <3l
7GR KIMEEZ N, M@ At 2l o 2 74 i .

3. “BhEJCR"HIShE SR, A HARTRIAE TR ShE TR Ny, FmeEkt T .

IE and :hover |E Fl:hover

Since version 7, IE can apply the :hover CSS pseudo-selector on any element (in strict mode). However, if
you have a significant number of elements with a :hover, the responsiveness degrades. The problem is even more

visible in IE 8.

HMIA 7 2)5, 1E ATUAEATAT 65 O E) FAf] thover 1IX A CSS fhiEHEds . AR1f1, W K
MIICEAEH] T :hover A8 23 AR S IR o B TR)UAE TES HH B SR

For example, if you create a table with 500—1000 rows and 5 columns and use tr:hover to change the
background color and highlight the row the user is on, the performance degrades as the user moves over the table.
The highlight is slow to apply, and the CPU usage increases to 80%—-90%. So avoid this effect when you work

with a large number of elements, such as big tables or long item lists.

fltn, WERARENE 7> 1 500-1000 47 5 IR EIER, IFAEH] trihover AR T A, e fibzn ARG
PRPTFERIAT, A EARORER BRI, PERESIRT. IRt Ml fE, CPU IR i mH
80%-90%. JIT LA 03 B AR 2 I 8 S A XA OR, B AR IR SR KK 8712

Event Delegation ZEAFHE%

When there are a large number of elements on a page and each of them has one or more event handlers
attached (such as onclick), this may affect performance. Attaching every handler comes at a price—either in the
form of heavier pages (more markup or JavaScript code) or in the form of runtime execution time. The more
DOM nodes you need to touch and modify, the slower your application, especially because the event attaching
phase usually happens at the onload (or DOMContentReady) event, which is a busy time for every
interaction-rich web page. Attaching events takes processing time, and, in addition, the browser needs to keep
track of each handler, which takes up memory. And at the end of it, a great number of these event handlers might
never be needed(because the user clicked one button or link, not all 100 of them, for example), so a lot of the

work might not be necessary.

HHHAAER IR, I AN CEAT DI E A S NS 2 3% (BT onclick) I, T RES R
WAPERE . JEEAR N UNHESE A I, LR HIBRURINE T 0HE . CE 2 (9 JRIARIC AT JavaScript 445)
R IAEIBAT I AT I TR) o AR 2507 MAME L E 2 (K DOM 9, FEPmt e S0, el X b A
HAR RS S A onload (5{ DOMContentReady) frf, RHEAT— AN 5 A2 B/ GOR BEHSZ — D EACH
1) BEo FERLFAE G TARBEINE], 9, BNES T B RN AR IRE %, THIBEZ A fr . IR T AR
SRR, IXSERAR AR A A ARAAT L (B FEANE 100% 428 sl AR T P vz
PITUMR 2 TAR#GZ AL ZE 1) o

A simple and elegant technique for handling DOM events is event delegation. It's based on the fact that events
bubble up and can be handled by a parent element. With event delegation, you attach only one handler on a

wrapper element to handle all events that happen to the children descendant of that parent wrapper.

—AME R OLHER AL B DOM SR EAR R FAHTE . ER TR g SRR BB RSO
AR RMFHE ARG, IR EAE MR R B D, TR 7o kBN
FoF.

According to the DOM standard, each event has three phases:

s DOM bR, BEANFAE AP E:

* Capturing

EHEN

* At target

Fi& H AR

* Bubbling

Capturing is not supported by IE, but bubbling is good enough for the purposes of delegation. Consider a page

with the structure shown in Figure 3-8.

IE ANSCHEAR, HSCIITEBORMEA B IEBL s 7o I8 3-8 Fros i ulii 454 .

¥ <html wming ="httpf fwawwd.org/ 1908 ixdhiml * xmblang ="en” lang="en">
* <heads
¥ <bogdy>
¥ odive
¥ <l [d="menu ">
¥ ||
menu #1</a=
ol
E <l
ol
ke clin
« ful>
< div>

Figure 3-8. An example DOM tree

K 3-8 —/> DOM ¥ [¥) 411

When the user clicks the "menu #1" link, the click event is first received by the <a> element. Then it bubbles
up the DOM tree and is received by the element, then the , then the <div>, and so on, all the way to the
top of the document and even the window. This allows you to attach only one event handler to a parent element

and receive notifications for all events that happen to the children.

I RGE T “menu #17ERE, Ul AEE G <a> TR IR AR5 ETEFE DOM B EL, #iTnERIL
B, WEL, & R<div>, 555, —HEACMMTZ, 2 window. XA LLURFEOILER |
Hag— NI, OREOITT oo s A R SRR A

Suppose that you want to provide a progressively enhanced Ajax experience for the document shown in the
figure. If the user has JavaScript turned off, then the links in the menu work normally and reload the page. But if
JavaScript is on and the user agent is capable enough, you want to intercept all clicks, prevent the default behavior
(which is to follow the link), send an Ajax request to get the content, and update a portion of the page without a
refresh. To do this using event delegation, you can attach a click listener to the UL "menu" element that wraps all

links and inspect all clicks to see whether they come from a link.

AR BEAR LN [b T 7 (R SCRSHR fiE—AN D R Ajax AREG . WA P OCH] T JavaScript, SICER) HE
B IR T LUIE W 3 00T o (HZ 01 2R JavaScript 4T TR0 H A ACBEA LB RE ST, ARAY BAEGRITA fiih,
BHAEERIAT A CRENBERR) RO Ajax TERERINVN AR, ARJE ANIHT DUt A% 5B & 20 wtifd . {8 H]
FAEFLE ST E, ART AE UL " menu" HOcEERE— A riii W a8, &P A RO BT AT click
it BEMWAESR KA M.

document.getElementByld(‘menu').onclick = function(e) {
// x-browser target
e = ¢ || window.event;
var target = e.target || e.srcElement;
var pageid, hrefparts;
// only interesed in hrefs
// exit the function on non-link clicks
if (target.nodeName !=="A") {
return;
H
// figure out page ID from the link
hrefparts = target.href.split('/");
pageid = hrefparts[hrefparts.length - 1];

pageid = pageid.replace('.html', ");

// update the page
ajaxRequest('xhr.php?page="+ id, updatePageContents);
// x-browser prevent default action and cancel bubbling
if (typeof e.preventDefault === "function') {
e.preventDefault();
e.stopPropagation();
}else {
e.returnValue = false;

e.cancelBubble = true;

-~

As you can see, the event delegation technique is not complicated; you only need to inspect events to see
whether they come from elements you're interested in. There's a little bit of verbose cross-browser code, but if you

move this part to a reusable library, the code becomes pretty clean. The cross-browser parts are:

IEWRPTE BIRSEE, FAEEBATEA R R AT E T S, BREMITRAZNIRE R ITER
R IR o X BAT LTRSS AN, WERARCRE EATRE AT AT, AR 2 i

125 D0 W A 0 AL AR

* Access to the event object and identifying the source (target) of the event

ViR SRS, JEAIWTER AR CH AR

* Cancel the bubbling up the document tree (optional)

ZARCSC B E . (AT

* Prevent the default action (optional, but needed in this case because the task was to trap the links and not follow

them)

BHAEBRABIAE CaTig, (HBEBIH AU, RO 55 0 il SR 0 AN N IX S8t 420)

Summary &4

DOM access and manipulation are an important part of modern web applications. But every time you cross the
bridge from ECMAScript to DOM-land, it comes at a cost. To reduce the performance costs related to DOM

scripting, keep the following in mind:

DOM Vj fia] MHRA A2 DA 50N] AR BB & 70 o (H BRI PRI LA 42 N ECMAScript & 235 DOM
I, EBSS BT 98 i/ DOM g i PERER 2R, 1 It AR JL A

* Minimize DOM access, and try to work as much as possible in JavaScript.
5e/ME DOM VijIn], {F JavaScript Ui U] REZ (1) 1%

* Use local variables to store DOM references you'll access repeatedly.
A S 7 0] (035 48] JR AL B A7 T DOM 51 .

* Be careful when dealing with HTML collections because they represent the live, underlying document. Cache
the collection length into a variable and use it when iterating, and make a copy of the collection into an array for

heavy work on collections.

ANOHIALEE HTML 2645, BUOAABA IR <AF A", RURR R Z SR R A i . AR5 1Y length J& 122
fr3) AR, FEIMACUPEHIXAN R . WEREFRAEIXAN LS, TR &8 N 2E .

* Use faster APIs when available, such as querySelectorAll() and firstElementChild.
WIS AT RERTE, B SR AP, i 01 querySelectorAll() A firstElementChild.

* Be mindful of repaints and reflows; batch style changes, manipulate the DOM tree "offline," and cache and

minimize access to layout information.
TR MEANR: AR SUARS, BLERAE DOM M, G2A7 I/ b xi A JafE K vs) .

* Position absolutely during animations, and use drag and drop proxies.

Ay A L0 AR, A HE TSR
* Use event delegation to minimize the number of event handlers.

il P A B SR S ME AR I R

FPUE Algorithms and Flow Control HyERE
FE

The overall structure of your code is one of the main determinants as to how fast it will execute. Having a very
small amount of code doesn't necessarily mean that it will run quickly, and having a large amount of code doesn't
necessarily mean that it will run slowly. A lot of the performance impact is directly related to how the code has

been organized and how you're attempting to solve a given problem.

AR EEAASE R S PATH L Mg R 2o AR DA s TR, R 2 WA Sl T H
PR R S AU AL U5 SORUR AR] A ke Ik AR AR R

The techniques in this chapter aren't necessarily unique to JavaScript and are often taught as performance
optimizations for other languages. There are some deviations from advice given for other languages, though, as
there are many more JavaScript engines to deal with and their quirks need to be considered, but all of the

techniques are based on prevailing computer science knowledge.

AFERARAGE HI T JavaScript Wi T HALTE S FPEREIAL . 04T — 200 FUMh vl 5 PR A dtilt, %
ALPEZFh JavaScript 51 EEAN 2SR, AFIXLEEAE LT v R AR U R

Loops &

In most programming languages, the majority of code execution time is spent within loops. Looping over a
series of values is one of the most frequently used patterns in programming and as such is also one of the areas
where efforts to improve performance must be focused. Understanding the performance impact of loops in

JavaScript is especially important, as infinite or long-running loops severely impact the overall user experience.

FERZ Bk 5, ARHATI W S BN PE fE— RV, PRk IR
—, PR SR P R S OGTE HIX 22— B JavaScript THEFPERERUSEIE 2 OC T, KA SEAE R
BE AN TR AT IR A 22 7™ i L AR 5

Types of Loops fE¥HIZREY

ECMA-262, 3rd Edition, the specification that defines JavaScript's basic syntax and behavior, defines four

types of loops. The first is the standard for loop, which shares its syntax with other C-like languages:

ECMA-263 FrfES: =€ T JavaScript FIFEATNEAIAT A, & X T VUMM FEIA . 55— b dE
for fi5¥h, 52K C 15 (M FIFER) -

for (var i=0; 1 < 10; i++){

//loop body

The for loop tends to be the most commonly used JavaScript looping construct. There are four parts to the for
loop: initialization, pretest condition, post-execute, and the loop body. When a for loop is encountered, the
initialization code is executed first, followed by the pretest condition. If the pretest condition evaluates to true,
then the body of the loop is executed. After the body is executed, the post-execute code is run. The perceived

encapsulation of the for loop makes it a favorite of developers.

for JAIAKMEAE 555 T 1Y) JavaScript A &5 M o & DU A8 wIanfeik, ardls&frr, R, it
o B A for AN, WHALATESEIRAT, RIGEEARTIIANT. WERFTIA AT LA true,
WA TR . SRIRISAT IR PATIA for AR S e L IR A MR T R B BRI i A o

The second type of loop is the while loop. A while loop is a simple pretest loop comprised of a pretest

condition and a loop body:

55 RGN L while 538 . while fEFA 2 —AMAT I FINBURIR, d1— DB AR — AN A BL

vari=0;

while(i < 10){

//loop body

i+t

>

—

Before the loop body is executed, the pretest condition is evaluated. If the condition evaluates to true, then the
loop body is executed; otherwise, the loop body is skipped. Any for loop can also be written as a while loop and

vice versa.

FEARIRPAT Z 0T, B SRR A AT vk 5. W SEAE ROy true, I 2MPAT I A A MIEIA A
et o AT for JEIAHE AT LUE A while A3, [Z IR

The third type of loop is the do-while loop. A do-while loop is the only post-test loop available in JavaScript

and is made up of two parts, the loop body and the post-test condition:

= FIIEIR T IE do-while 753K . do-while #53FJE JavaScript HE——Ff 5 MR FUIEIR, &5 PITE) -
PR i IR A A4 -

vari=0;
do {
//loop body

} while (i++ < 10);

In a do-while loop, the loop body is always executed at least once, and the post-test condition determines

whether the loop should be executed again.

FE—A> do-while Ji3AH, A AR ADIEAT U, JEINK AT HRE PR AT B AR IIAT .

The fourth and last loop is the for-in loop. This loop has a very special purpose: it enumerates the named

properties of any object. The basic format is as follows:

VR 5 — PEIFR A for-in f53h o LEARIAAT DN ARFRFIRIN T IE: €] MR B iy 44
JE e HEEAHS T

for (var prop in object){
//loop body

1
s

Each time the loop is executed, the prop variable is filled with the name of another property (a string) that
exists on the object until all properties have been returned. The returned properties are both those that exist on the

object instance and those inherited through its prototype chain.

BEOAEIANAT, SRR LI RBP4 7 AN PR, BRI RN G s Mk) 58 B4 1
(] 3 [) Jem AP 4580 5 £ S 401 B 1 R e A St R e 2k T R S

Loop Performance 7&¥{:fe

A constant source of debate regarding loop performance is which loop to use. Of the four loop types provided

by JavaScript, only one of them is significantly slower than the others: the for-in loop.

IR it 4 8 (R0 R Sk B 2 3 FHWIB G 3K o 7E JavaScript 42 (VORI ER A, AT —FPAG 2R Eh At
PEIRI] 224 for-in 53R

Since each iteration through the loop results in a property lookup either on the instance or on a prototype, the
for-in loop has considerably more overhead per iteration and is therefore slower than the other loops. For the
same number of loop iterations, a for-in loop can end up as much as seven times slower than the other loop types.
For this reason, it's recommended to avoid the for-in loop unless your intent is to iterate over an unknown number
of object properties. If you have a finite, known list of properties to iterate over, it is faster to use one of the other

loop types and use a pattern such as this:

1 T BR OB ERA T L RS S E R S P, for-in AR JGEACHR ZAT H SE 22 TF4F, BT DAL A SR
TS L. FEFRRERITE ISR, for-in JEFA EE ARSI G IME 7 52 22 o DIURAREAF OB 0 T
BRARR T ZR R H AT SR EREA TR A, A WA for-in FEF . WURPKIEAE S MTIRI, &
SN s ERER, AR ARSI B PR, R A A A K

var props = ["prop1", "prop2"],
1=0;
while (i < props.length){

process(object[props[i]]);

—

This code creates an array whose members are property names. The while loop is used to iterate over this small
number of properties and process the appropriate member on object. Rather than looking up each and every

property on object, the code focuses on only the properties of interest, saving loop overhead and time.

L ARSI A e s B3 R 44 K BRI BA B o whiile A3 T T3 1 3 J LA Jags 14 A BE BT X0 12 AR 0 SR 3 0
AN 388 0 R IR g o BEARRS FOGHE OGRS I, 1940 TR I A] .

Aside from the for-in loop, all other loop types have equivalent performance characteristics such that it's not
useful to try to determine which is fastest. The choice of loop type should be based on your requirements rather

than performance concerns.

B for-in ¥R AN, FLARAEFSEHIVEREAH 2, ME LU E MR 2R SR . LR PRSI NI T F SR M A2 1k

an
[y
o

If loop type doesn't contribute to loop performance, then what does? There are actually just two factors:

WERAEIA B S PERETC R, ATk ? JLse A A A 3R

* Work done per iteration

RGBT A4

e Number of iterations

AR EL

By decreasing either or both of these, you can positively impact the overall performance of the loop.

T I IX P A B A CIRRATIRTRDD A mT AR 2 i A (1 S AR P RE

Decreasing the work per iteration #/DERK T/EE

It stands to reason that if a single pass through a loop takes a long time to execute, then multiple passes
through the loop will take even longer. Limiting the number of expensive operations done in the loop body is a

good way to speed up the entire loop.

AN, U KA IEACTE BRI T RAA T, A 2 AR 5 2 AN 8] o BRABIEA A A A 2k
ATAEI 3R I B R I PRAG IR 8 T35

A typical array-processing loop can be created using any of the three faster loop types. The code is most

frequently written as follows:

AN R AR BRI R TR =R IR AT P e H A AR R T

//original loops

for (var i=0; i < items.length; i++){
process(items][i]);

b

var j=0;

while (j <items.length){
process(items[j++]]);

b

var k=0;

do {
process(items[k++]);

+ while (k < items.length);

In each of these loops, there are several operations happening each time the loop body is executed:

FERFAMEIA T, RRIISATIRIAR AR B R AU R LA A -

1. One property lookup (items.length) in the control condition

e S — R % (items.length)

2. One comparison (i < items.length) in the control condition

FEREHISATFHPAT — K LA (G < items.length)

3. One comparison to see whether the control condition evaluates to true (i<items.length==true)

PORHRAT, S8 5 HA 1z .45 B2 A 2 true (i < items.length == true)

4. One increment operation (i++)

—IKEINEAE G

5. One array lookup (itemsJ[i])

—IRE AR Gitems[i])

6. One function call (process(items[i]))

—IREREH A (process(items[i]))

There's a lot going on per iteration of these simple loops, even though there's not much code. The speed at
which the code will execute is largely determined by what process() does to each item, but even so, reducing the

total number of operations per iteration can greatly improve the overall loop performance.

FEIR LS B ARIA TR, BB K 2 AR, BRGAACR B AT VR 2 40 o ANIs AT AR R oy
process(XF BENITH AUERAR BT oE , RIEWIE, sl DREIGEAR AR K K0T ORI 52 m i AR AR fiE o

The first step in optimizing the amount of work in a loop is to minimize the number of object member and
array item lookups. As discussed in Chapter 2, these take significantly longer to access in most browsers versus
local variables or literal values. The previous examples do a property lookup for items.length each and every time
through the loop. Doing so is wasteful, as this value won't change during the execution of the loop and is therefore
an unnecessary performance hit. You can improve the loop performance easily by doing the property lookup once,

storing the value in a local variable, and then using that variable in the control condition:

PEACHEIA TAE R 20 S Ul AT 52l DORIT S A I £ 4 R B IE U 2R 2 BB I, A2 K 2 B a4 L,
SXLEARAR LLV i) Jr) P83 e o A B o A I) o 7T R 9] R R RO A AR A 4K items. lengtho 352 —FHiR
o BOVZAEAETEIMEPAT IR AN S, I T AL EER PR BB 2% o AR AT LA SR MR B AE A\ —
MR, A A XA R AR R, AR & T AR RE

//minimizing property lookups

for (var i=0, len=items.length; i < len; i++){
process(items[i]);

H

var j=0,

count = items.length;

while (j < count){
process(items[j++]]);

}

var k=0,

num = items.length;

do {
process(items[k-++]);

+ while (k < num);

Each of these rewritten loops makes a single property lookup for the array length prior to the loop executing.
This allows the control condition to be comprised solely of local variables and therefore run much faster.
Depending on the length of the array, you can save around 25% off the total loop execution time in most browsers

(and up to 50% in Internet Explorer).

XL S 5 IR AR AT Z B B B AT R P il o XA A A R e S
IBEE, PrOAHE R . ARPE AL A, AR K 2 B e g B AR RT LAY 48 K4 25% (1 BRI H) (FE Internet

Explorer A 1544 50%)

You can also increase the performance of loops by reversing their order. Frequently, the order in which array

items are processed is irrelevant to the task, and so starting at the last item and processing toward the first item is

an acceptable alternative. Reversing loop order is a common performance optimization in programming languages
but generally isn't very well understood. In JavaScript, reversing a loop does result in a small performance

improvement for loops, provided that you eliminate extra operations as a result:

PRI] DAL AR AP s R PP e o G, BT R BN AT 55705, RAT AR G —
NG, ERAEBESER AN I0ER . BRI R g REE 5 3 I PEREOLAL A, (B BORUEAK A S B .
fE JavaScript ", BRI ET LA Gl SR IR PR RE, BRI BRI I A (A A b g A -

//minimizing property lookups and reversing

for (var i=items.length; i--;){
process(items[i]);

}

var j = items.length;

while (j--){
process(items[j]]);

}

var k = items.length-1;

do {
process(items([k]);

}+ while (k--);

The loops in this example are reversed and combine the control condition with the decrement operation. Each
control condition is now simply a comparison against zero. Control conditions are compared against the value
true, and any nonzero number is automatically coerced to true, making zero the equivalent of false. Effectively,
the control condition has been changed from two comparisons (is the iterator less than the total and is that equal to
true?) to just a single comparison (is the value true?). Cutting down from two comparisons per iteration to one
speeds up the loops even further. By reversing loops and minimizing property lookups, you can see execution

times that are up to 50%—60% faster than the original.

Bl T EPIEEA, IR A Tl BRI A R SR B S B T AT LA 14
PE5 true (EHHATEUEL, ARMTAEZRACT Bahm b HN true, 1% SR T false. SKfn b, #HIZIFC 2 MM

W GERD T BB ? EET true 5?2) Jb B — KR CEET true 5?) o GREANERH B XL
BP0 B R0AT DO B3 A ol i B P PR A e ML B P Ef), AR mT DUE BT bR 5L h il
AT 50%-60%-

As a comparison to the originals, here are the operations being performed per iteration for these loops:

5 S IGRCAAILE R JGOE A HBEAT R A

1. One comparison (i == true) in the control condition

FEFE AT R EA T IR (== true)

2. One decrement operation (i--)

—IRIEIRRAE Ge-)

3. One array lookup (itemsJ[i])

— B AT Gitems[i])

4. One function call (process(items[i]))

— IR (process(items[i]))

The new loop code has two fewer operations per iteration, which can lead to increasing performance gains as

the number of iterations increases.

PR IGEACH D AR, BEAE IR, PERERS B 58T

Decreasing the number of iterations J/b &Ik

Even the fastest code in a loop body will add up when iterated thousands of times. Additionally, there is a
small amount of performance overhead associated with executing a loop body, which just adds to the overall
execution time. Decreasing the number of iterations throughout the loop can therefore lead to greater performance

gains. The most well known approach to limiting loop iterations is a pattern called Duff's Device.

AR IR fA rh B BRI AR, RTHIAAC T (KRR AN o BeAh, REXGEATIRIAAI # 2 A4
—MRNIVERETTA, BN IS AT I] o DA AR REOT SR AT B PR RESE T .) N
(1 PR A IS AR KL R AR PR A TE R BEAE

Duff's Device is a technique of unrolling loop bodies so that each iteration actually does the job of many
iterations. Jeff Greenberg is credited with the first published port of Duff's Device to JavaScript from its original

implementation in C. A typical implementation looks like this:

BRI MEIAEETTEOR, A5 B S2Br E4hAT T 2 0S8 . Jeff Greenberg HIA Y /&
W IB R RLAT C LI AL E JavaScript TR — Ao —NIAE LT

//credit: Jeff Greenberg
var iterations = Math.floor(items.length / 8),
startAt = items.length % 8,
1=0;
do {
switch(startAt){
case 0: process(items[i++]);
case 7: process(items[i++]);
case 6: process(items[i++]);
case 5: process(items[i++]);
case 4: process(items[i++]);
case 3: process(items[i++]);
case 2: process(items[i++]);
case 1: process(items[i++]);
H
startAt = 0;

} while (--iterations);

The basic idea behind this Duff's Device implementation is that each trip through the loop is allowed a

maximum of eight calls to process(). The number of iterations through the loop is determined by dividing the total

number of items by eight. Because not all numbers are evenly divisible by eight, the startAt variable holds the
remainder and indicates how many calls to process() will occur in the first trip through the loop. If there were 12
items, then the first trip through the loop would call process() 4 times, and then the second trip would call

process() 8 times, for a total of two trips through the loop instead of 12.

IERBEETT IR FEA B S BRI P 82 v] 8 IR T process() BRI, 3R IAARIRECY 03 B B LA
8o A A2 8 IREELAS, P LA startAt ASEEAFTRUREL, 157 HH AR — IRAEA HH Y 244047 2 2K process()»
HeTs BEAEA 12 A oeas, ARG process(4 U 5 —UXABH I process(8 ¥, I 2 A

R T 12 RAEH .

A slightly faster version of this algorithm removes the switch statement and separates the remainder

processing from the main processing:

PESE AR IRA IO T switch Kk, KRB B S T35 IF:

//credit: Jeff Greenberg

var 1 = items.length % 8§;

while(i){
process(items[i--]);

}

i = Math.floor(items.length / 8);

while(i) {
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);

process(items[i--]);

Even though this implementation is now two loops instead of one, it runs faster than the original by removing

the switch statement from the loop body.
SARICARHE A MR TSR —AS, AHE L8 TIRIMA T switch FIAS, W .

Whether or not it's worthwhile to use Duff's Device, either the original or the modified version, depends
largely on the number of iterations you're already doing. In cases where the loop iterations are less than 1,000,
you're likely to see only an insignificant amount of performance improvement over using a regular loop construct.
As the number of iterations increases past 1,000, however, the efficacy of Duff's Device increases significantly. At

500,000 iterations, for instance, the execution time is up to 70% less than a regular loop.

FEAEAHE IR B, TR S AR IRRCAS IR FEAE R IORRCAS, AROCRE AR T AR IR LR A
MBS 1000 K, URA]AERTE 28 5 Wi AR AT L AT RO A2l i PERESR T A RSARR Bk i
1'000 K, TAR B MRCRKG B RAET . Bl 5000000 kAR, 1847 I A LS @ G FR g b 21 70% .

Function-Based Iteration 3T R HIES

The fourth edition of ECMA-262 introduced a new method on the native array object call forEach(). This
method iterates over the members of an array and runs a function on each. The function to be run on each item is
passed into forEach() as an argument and will receive three arguments when called, which are the array item

value, the index of the array item, and the array itself. The following is an example usage:

ECMA-262 FrUEZVURRA4H T AR B AL G 10— AN 81)7 v2: forBach(). 67338 i — AN BT A R i
FAEREA L EHAT A3 A ICE EHAT IR EUE N forBach(O)I S 5Lt J:, FRE il IRl =
MNSHG EAE: B E, ARG, M A S TR

items.forEach(function(value, index, array){

process(value);

s

The forEach() method is implemented natively in Firefox, Chrome, and Safari. Additionally, most JavaScript

libraries have the logical equivalent:

forBach() & ZU4E: Firefox, Chrome, F1 Safari H' 4 J5i/E

/YU 3

Y .Array.each(items, function(value, index, array){
process(value);

1);

/ljQuery

jQuery.each(items, function(index, value){
process(value);

1)

//Dojo

dojo.forEach(items, function(value, index, array){
process(value);

1)

//Prototype

items.each(function(value, index){
process(value);

1)

//MooTools

$each(items, function(value, index){

process(value);

s

PREL. hb, KZH JavaScript PEANA S5 SEIL -

Even though function-based iteration represents a more convenient method of iteration, it is also quite a bit

slower than loop-based iteration. The slowdown can be accounted for by the overhead associated with an extra

method being called on each array item. In all cases, function-based iteration takes up to eight times as long as

loop-based iteration and therefore isn't a suitable approach when execution time is a significant concern.

UG HRET s IRACEAT TR, B2 LI TR IS AN 28, RR SR AL SCIBR A 1) R 2
AP AL S A O S A o AEPTAT TG D0 B s S pR BB ARG P I T2 B AR A (IR AR)\, DR G

FESATIRI RS B0 N EIFA R — D EE R IrE.

Conditionals £&HRIER,

Similar in nature to loops, conditionals determine how execution flows through JavaScript. The traditional
argument of whether to use if-else statements or a switch statement applies to JavaScript just as it does to other
languages. Since different browsers have implemented different flow control optimizations, it is not always clear

which technique to use.

S5EAL, £ARIA8 e JavaScript BT HIE 7] HAhTE S if-else 83 switch RIA 1S
W38 T JavaScripte FH AN RS WA AR S T TANEI A L, AF R AR A B2 IR

3y A
HE,

if-else Versus switch if-else 5 switch H#%

The prevailing theory on using if-else versus switch is based on the number of conditions being tested: the
larger the number of conditions, the more inclined you are to use a switch instead of if-else. This typically comes
down to which code is easier to read. The argument is that if-else is easier to read when there are fewer conditions

and switch is easier to read when the number of conditions is large. Consider the following:

il if-else B switch AOIALAT BI85 TR A AR BOR: SoMFECREIOR, i) T switch il AN 2
if-else o XI5 YA 45 2IAUAS) 5 B o KRR A AR SAFHUD I, if-else 25 5 4 32, 1) 4 AH AL 2 I switch

EARS . %8N HJLA:

if (found){
//do something
} else {
//do something else
H
switch(found){
case true:
//do something
break;

default:

//do something else

—

Though both pieces of code perform the same task, many would argue that the if-else statement is much easier

to read than the switch. Increasing the number of conditions, however, usually reverses that opinion:

BRSPS ILFRIAEAT S, IRZ ANSIAN if-else RIA L witch FRIBX A G 5z AL N4 4
PRIECE, 0 AR A

if (color == "red"){
//do something
} else if (color == "blue"){
//do something
} else if (color == "brown"){
//do something
} else if (color == "black"){
//do something
} else {
//do something
H
switch (color){
case "red":
//do something
break;
case "blue":
//do something
break;
case "brown":
//do something
break;

case "black":

//do something
break;
default:

//do something

—

Most would consider the switch statement in this code to be more readable than the if-else statement.

REBNINAIZBAS) switch 2k 3 if-else FIA A AT BEPE B 4T

As it turns out, the switch statement is faster in most cases when compared to if-else, but significantly faster
only when the number of conditions is large. The primary difference in performance between the two is that the
incremental cost of an additional condition is larger for if-else than it is for switch. Therefore, our natural
inclination to use if-else for a small number of conditions and a switch statement for a larger number of

conditions is exactly the right advice when considering performance.

FYAEY], KZEEDLF switch RIELE if-else AR, (HRAT A ALURARKIN A W BB, P& TR
(3 ZPEREDCRIAE T A ASE NI, if-else PERESHIEINARLEELE switch B2 o [At, FRATTH H AR
[A S A AR D I AR if-else 1M 46 A AR 22 I AR switch A, Wik AP RE D5 10 2% FE B2 IEAIK -

Generally speaking, if-else is best used when there are two discrete values or a few different ranges of values
for which to test. When there are more than two discrete values for which to test, the switch statement is the most

optimal choice.

R UL, if-else 8T AT AN 8 L E B T LA AN RIS 0 SR 22 T P AN B IR, switch
FAB TR L BB AR L

Optimizing if-else itk if-else

When optimizing if-else, the goal is always to minimize the number of conditions to evaluate before taking the
correct path. The easiest optimization is therefore to ensure that the most common conditions are first. Consider

the following:

DLt if-else 17 H b3 b i Bue /NG R B TE A 73 S22 il i P e 2% P A R K« e Tl R PR DI 5V R 2 o i L 1
FAATIAEE AL 5 18 1 T 4] 1

if (value <5) {
//do something

} else if (value > 5 && value < 10) {
//do something

} else {

//do something

This code is optimal only if value is most frequently less than 5. If value is typically greater than or equal to 10,
then two conditions must be evaluated each time before the correct path is taken, ultimately increasing the average
amount of time spent in this statement. Conditions in an if-else should always be ordered from most likely to least

likely to ensure the fastest possible execution time.

X BACIS LAY value [HEH /DN T 5 WA SRR . 1R value &% K T25T 10, IBALEHENIEfMS L
ZHT, WP IGE AR, SEERIAN PN g . if-else H KA N 2 5 2 44 N B MR 3]
B MERFIFHES, DARAE PR SIS AT 3 fe b

Another approach to minimizing condition evaluations is to organize the if-else into a series of nested if-else
statements. Using a single, large if-else typically leads to slower overall execution time as each additional

condition is evaluated. For example:

T oh T Z AW R (K i if-else AU RINRE R if-else LK o A HAMAT— K
Hi 1 if-else MW FHOSATEEME, KW A AECERET 5. Bl

if (value == 0){
return resultO;

} else if (value == 1){
return resultl;

} else if (value == 2){

return result2;

} else if (value == 3){
return result3;

} else if (value == 4){
return result4;

} else if (value == 5){
return result5;

} else if (value == 6){
return result6;

} else if (value == 7){
return result7;

} else if (value == 8){
return result8;

} else if (value == 9){
return result9;

} else {

return result10;

-

With this if-else statement, the maximum number of conditions to evaluate is 10. This slows down the average
execution time if you assume that the possible values for value are evenly distributed between 0 and 10. To
minimize the number of conditions to evaluate, the code can be rewritten into a series of nested if-else statements,

such as:

FERXA if-else LI, PFrob 84 HR BB H 2 10 RERBE value IIMEAE 0 21 10 Z [355) 73Aii,
A2 BN B I8 AT I TR o D T b 2RI AR, RS T S 0 RANRE Y if-else FIX 3L, 1

if (value < 6){
if (value < 3){
if (value == 0){

return resultO;

} else if (value == 1){
return resultl;

}else {
return result2;

H

} else {

if (value == 3){
return result3;

} else if (value == 4){
return result4;

} else {

return results;

}
}

} else {
if (value < 8){
if (value == 6){
return result6;
}else {
return result7;
H
}else {
if (value == 8){
return results;
} else if (value == 9){
return result9;
}else {

return result10;

}

—

-~

The rewritten if-else statement has a maximum number of four condition evaluations each time through. This is
achieved by applying a binary-search-like approach, splitting the possible values into a series of ranges to check
and then drilling down further in that section. The average amount of time it takes to execute this code is roughly
half of the time it takes to execute the previous if-else statement when the values are evenly distributed between 0
and 10. This approach is best when there are ranges of values for which to test (as opposed to discrete values, in

which case a switch statement is typically more appropriate).

FEFE S if-else RIAAXH, BRI IER 7> SO B 2 TR DA S AF Ao B4 VARG 300 7
T RAXI], RGBS AN AV L ATAE 0 2 10 I, RACHS -1 A7 I [/] K 24952 iy I
ARRA)0 IR T/ SRR BUE AR O ARXT I B R U switch BEAIE) .

Lookup Tables ZF ik

Sometimes the best approach to conditionals is to avoid using if-else and switch altogether. When there are a
large number of discrete values for which to test, both if-else and switch are significantly slower than using a
lookup table. Lookup tables can be created using arrays or regular objects in JavaScript, and accessing data from a
lookup table is much faster than using if-else or switch, especially when the number of conditions is large (see

Figure 4-1).

ALl o BB T if-else B switcho 4 K& B HUE T LN, if-else A1 switch # b A FH £ & vk
F8A3Z . {E JavaScript 1A 272 T Al FH A0 A B G, A yE U R B L if-else B switch B
P FENPY S ARE H AR K, CanlE 4-1)

180 -
175 o
P L s -
170 '?
z A
165 J
g /
160 - !
% JU
.__-*_....._.—.L..—.__.__.‘__.‘__‘F—.b—""‘
g5 e
=
150 4
145 1
140 r r r r r : T T T T
1 1 3 4 5 f 7 8 9 10 1
Number of conditions
I statement == Switch statement —e— Array lookup |

Figure 4-1. Array item lookup versus using if-else or switch in Internet Explorer 7

4-1 Internet Explorer 7 1441 & if] 45 if-else B switch [LLER

Lookup tables are not only very fast in comparison to if-else and switch, but they also help to make code more
readable when there are a large number of discrete values for which to test. For example, switch statements start

to get unwieldy when large, such as:

4 if-else M1 switch ATEL, AREAMARH DL, 10 H 29 75 20U 2 U BCE AR OO, WA B TR
PR B, 4 switch FRIEAARNIN i ASAHRAHE, -

switch(value){

case 0:

return resultO;
case 1:

return resultl;
case 2:

return result2;
case 3:

return result3;

case 4:

return result4;
case 5:

return result5;
case 6:

return result6;
case 7:

return result7;
case 8:

return result8;
case 9:

return result9;
default:

return result10;

The amount of space that this switch statement occupies in code is probably not proportional to its importance.

The entire structure can be replaced by using an array as a lookup table:

switch FIX AR fy 11972 18] w] e B 1K S B E AN LE il AN ik] U] AU A 4R

//define the array of results
var results = [result0, resultl, result2, result3, result4, result5, result6, result7, result8, result9, result10]
//return the correct result

return results[value];

When using a lookup table, you have completely eliminated all condition evaluations. The operation becomes
either an array item lookup or an object member lookup. This is a major advantage for lookup tables: since there

are no conditions to evaluate, there is little or no additional overhead as the number of possible values increases.

A ERIEN, A AR AR ARl DRI B — R SR R . A
MEREN A BRI RS BN, S e, R0, FRRARmas TG
TFA o

Lookup tables are most useful when there is logical mapping between a single key and a single value (as in the
previous example). A switch statement is more appropriate when each key requires a unique action or set of

actions to take place.

BT T AN —AME B IZ A A Uk CUnir i i1 o —> switch RIEA G & T4
AR IR, BCE - RABIERIA

Recursion &9

Complex algorithms are typically made easier by using recursion. In fact, there are some traditional algorithms

that presume recursion as the implementation, such as a function to return factorials:

SORGEGEH LA S A S S b, ARG Rk e LU ST, 1 Qi 3Fe ol 44

function factorial(n){
if (n==0){
return 1;
} else {
return n * factorial(n-1);

}

—

The problem with recursive functions is that an ill-defined or missing terminal condition can lead to long
execution times that freeze the user interface. Further, recursive functions are more likely to run into browser call

stack size limits.

PR EU S, — MERRE S B S DR S AT S ECKIN ST, dRa T . sAh, I
bR B 2 8 1900 2 AR R/ A B

Call Stack Limits 1 F PR

The amount of recursion supported by JavaScript engines varies and is directly related to the size of the
JavaScript call stack. With the exception of Internet Explorer, for which the call stack is related to available
system memory, all other browsers have static call stack limits. The call stack size for the most recent browser
versions is relatively high compared to older browsers (Safari 2, for instance, had a call stack size of 100). Figure

4-2 shows call stack sizes over the major browsers.

JavaScript 5|4 T 2 Fr 8 980 5 TavaScript 17 RO BN E. AT Internet Explorer #1146, "1
I E S T R GENAFAHOC, FoAd 0] Y s A7 T 5 PR FH RS R o R 22 5B A Q) U 2 (0 1 FH e R T b2 i)
VAR BN ()l Safari 2 PR FHER RS2 1000 o 18] 4-2 o H A0 B 8 iR 1 FH AR R/

35,000 -
mf
gnm' N8 NYY7
20,000
3 5000 -
10000 - 10,000 10,000
5000 1 3
Nisls = %H H E)
A%
PELLLL ST

Figure 4-2. JavaScript call stack size in browsers

Kl 4-2 %28 1Y JavaScript i FH AR

When you exceed the maximum call stack size by introducing too much recursion, the browser will error out

with one of the following messages:

AR TR Z iR, B ORI EORCT I, g e AR R 9 DU A R

* Internet Explorer: “Stack overflow at line x”

e Firefox: “Too much recursion”

 Safari: “Maximum call stack size exceeded”

* Opera: “Abort (control stack overflow)”

Chrome is the only browser that doesn't display a message to the user when the call stack size has been

exceeded.

Chrome 2 ME— /N g 7 1 FH A s HH Al 52 10 B 2

Perhaps the most interesting part of stack overflow errors is that they are actual JavaScript errors in some
browsers, and can therefore be trapped using a try-catch statement. The exception type varies based on the
browser being used. In Firefox, it's an InternalError; in Safari and Chrome, it's a RangeError; and Internet
Explorer throws a generic Error type. (Opera doesn't throw an error; it just stops the JavaScript engine.) This

makes it possible to handle such errors right from JavaScript:

KTV H B AR, B NGB IEE 7 KM ER L s as b, A1 /2 JavaScript H11%, 1
L —A try-catch FRIA gk . i SR W #81MAN[F] o 75 Firefox W1, ‘&2 — InternalError; 7t Safari
F1 Chrome #', ‘&t RangeError; 7E Internet Explorer 4l tH —A~—MeE ¥ Error 287, (Opera Al H

Hix: ‘BZ0L JavaScript 518 o XAFAFIRATREW A JavaScript HY IEAf AL P LU 1R «

try {

recurse();
} catch (ex){

alert("Too much recursion!");

If left unhandled, these errors bubble up as any other error would (in Firefox, it ends up in the Firebug and
error consoles; in Safari/Chrome it shows up in the JavaScript console), except in Internet Explorer. IE will not
only display a JavaScript error, but will also display a dialog box that looks just like an alert with the stack

overflow message.

WERAEE, IBAXLEH PRI R —FF B b A% (fE Firefox 97, ‘&/45 1T Firebug FI % £ i
1E Safari/Chrome "¢ 7/~ 7E JavaScript 24t) , W Internet Explorer f§]4h. 1IE A2 78— JavaScript

BR, (HE SR R HERR R A SRR TTHE

Recursion Patterns iR,

When you run into a call stack size limit, your first step should be to identify any instances of recursion in the
code. To that end, there are two recursive patterns to be aware of. The first is the straightforward recursive pattern

represented in the factorial() function shown earlier, when a function calls itself. The general pattern is as follows:

PRI PR R BRI, 58— 20 W2 € L AR T (3 I SE Lo Dt A1 AN AR T
S I AR ARR AT TR 2 factorial ORR AL, RI—ANRBOMA A S . H— Ml T

function recurse(){

recurse();

}

recurse();

This pattern is typically easy to identify when errors occur. A second, subtler pattern involves two functions:
MRAFTRN, XA LR G e A TR R AR, e S A R

function first(){

second();

}

function second(){

first();

§
first();

In this recursion pattern, two functions each call the other, such that an infinite loop is formed. This is the more

troubling pattern and a far more difficult one to identify in large code bases.

FEIXFIE AR, A B ECEAR T, T AN ERRAAR o 10— A AV IR, 7R RAR
B 2 o S B R AR PR X o

Most call stack errors are related to one of these two recursion patterns. A frequent cause of stack overflow is
an incorrect terminal condition, so the first step after identifying the pattern is to validate the terminal condition. If
the terminal condition is correct, then the algorithm contains too much recursion to safely be run in the browser

and should be changed to use iteration, memoization, or both.

K2 O IR R S I AR 2 — A5G0 W DL AR i DAL — AN IE R 22 1R 461, BT ELE A
BRI D e b 5 fF . WUREZESAE IR, R ATEWE TRZIREN, A TR 2 et
WS PIsAT, POAENEA, B, s E AT

4 memoization, WA, BLEIX AR, PENCHIZR”, A memorization !

memoization, X tabulation, 5 B4 F 1Y tab 4.

JR T FEAE S VR, TS, WU MO SRR E AE R, R R 2 S, A

FARMNEA A ARG LR, A0 R

Iteration &R

Any algorithm that can be implemented using recursion can also be implemented using iteration. Iterative
algorithms typically consist of several different loops performing different aspects of the process, and thus
introduce their own performance issues. However, using optimized loops in place of long-running recursive
functions can result in performance improvements due to the lower overhead of loops versus that of executing a

function.

AFAT AT LA YR SR SR A T AT ACSE B o IRARST0E W A LA AR B 3A 3 Jnil 0 B SR R
AT, B SEE CRPEREN . (HE, (A PR AR IR TRIE AT 10 326 U1 R B0PT LASR i PR e
BRI AT AN EE B 23— A e&) T 241K

As an example, the merge sort algorithm is most frequently implemented using recursion. A simple JavaScript

implementation of merge sort is as follows:

Blhn, &I RS R R LS A SEBL R S . — AN B JavaScript SEHLF & I HE P S50 T -

function merge(left, right){
var result = [];
while (left.length > 0 && right.length > 0){
if (left[0] < right[0]){
result.push(left.shift());
}else {
result.push(right.shift());
}
H
return result.concat(left).concat(right);
H
function mergeSort(items){
if (items.length == 1) {
return items;
H
var middle = Math.floor(items.length / 2),
left = items.slice(0, middle),
right = items.slice(middle);

return merge(mergeSort(left), mergeSort(right));

The code for this merge sort is fairly simple and straightforward, but the mergeSort() function itself ends up
getting called very frequently. An array of n items ends up calling mergeSort() 2 * n —1 times, meaning that an

array with more than 1,500 items would cause a stack overflow error in Firefox.

EAE ARG A U PR 4%, (22 mergeSort()BREHE I FHAEF ANE . — AN BA n NI EA S IL
F mergeSort()i& 2 *n-1 ¥, W2, X—EE 1500 NI A A, #inT GEAE Firefox b3 S0k
the

Running into the stack overflow error doesn't necessarily mean the entire algorithm has to change; it simply
means that recursion isn't the best implementation. The merge sort algorithm can also be implemented using

iteration, such as:

FEFF B AR AR F AN — € BB SO L R R S AR I i (0SB B PP S0E
AT DA IEARSEIL, Wk

/hases the same mergeSort() function from previous example
function mergeSort(items){
if (items.length == 1) {
return items;
}
var work = [];
for (var i=0, len=items.length; i <len; i++){
work.push([items][i]]);
}
work.push([]); //in case of odd number of items
for (var lim=len; lim > 1; lim = (lim+1)/2){
for (var j=0,k=0; k < lim; j++, k+=2){
work[j] = merge(work[k], work[k+1]);
}

work[j] = []; //in case of odd number of items

}

return work[0];

This implementation of mergeSort() does the same work as the previous one without using recursion.
Although the iterative version of merge sort may be somewhat slower than the recursive option, it doesn't have the
same call stack impact as the recursive version. Switching recursive algorithms to iterative ones is just one of the

options for avoiding stack overflow errors.

1 mergeSort()SE L iy T ¥ R 250 SE L IRIRE D R 1 v A A P2 U o BB ARAKAX AR (145 JF: HE e T E L 3t VA ik
A28, (eSS A SASA M A . R VA SR D)3 B AU G Bl HR AR A2

o

Memoization 3%

Work avoidance is the best performance optimization technique. The less work your code has to do, the faster
it executes. Along those lines, it also makes sense to avoid work repetition. Performing the same task multiple
times is a waste of execution time. Memoization is an approach to avoid work repetition by caching previous

calculations for later reuse, which makes memoization a useful technique for recursive algorithms.

ol D T A A B S IR PR REDEAL B o AR BT) St D, e s AT B i . AR L st et
RER TAAWRAE . ZRPITHFRESBAEREN . IR, WA G54 R e s 500
EEAM, e T ER AR XA O AT A R .

When recursive functions are called multiple times during code execution, there tends to be a lot of work
duplication. The factorial() function, introduced earlier in "Recursion" on page 73, is a great example of how

work can be repeated multiple times by recursive functions. Consider the following code:

AR I, B TARIRZ . {F factorial OB EH (ZERTIHIA ALY ek 5O, &—A
U PR B R 2 RN LR o S5 RS T AR «

var fact6 = factorial(6);
var fact5 = factorial(5);

var fact4 = factorial(4);

This code produces three factorials and results in the factorial() function being called a total of 18 times. The
worst part of this code is that all of the necessary work is completed on the first line. Since the factorial of 6 is
equal to 6 multiplied by the factorial 5, the factorial of 5 is being calculated twice. Even worse, the factorial of 4 is
being calculated three times. It makes far more sense to save those calculations and reuse them instead of starting

over anew with each function call.

PEACHE AL = AN o4 R, factorial O REEUSILHR M T 18 Y. MARKY h S HEREFR 0, T Al 211
TR AU HATE T B 6 BT RAET 6 LA 5 (B afe, FrLA 5 (E st 55 17 k.
HERERI RS, 4 MRS SE T =k SN IR T it DA A eI TS AR, AN R T
THEEHEA B AL

You can rewrite the factorial() function to make use of memoization in the following way:

PRAT LME IR BOACK S factorial ORR 4L, 41T

function memfactorial(n){

if (!memfactorial.cache){

memfactorial.cache = {
"o 1,

Hlﬂ: 1

H

if (!memfactorial.cache.hasOwnProperty(n)){
memfactorial.cache[n] = n * memfactorial (n-1);

§

return memfactorial.cache[n];

-~

The key to this memoized version of the factorial function is the creation of a cache object. This object is
stored on the function itself and is prepopulated with the two simplest factorials: 0 and 1. Before calculating a
factorial, this cache is checked to see whether the calculation has already been performed. No cache value means
the calculation must be done for the first time and the result stored in the cache for later usage. This function is

used in the same manner as the original factorial() function:

KA) B A (K e bR B GBS — AN AP B SRR T BB, JFTIUE T P S] 1
MR aFe: 0 A1 1. fEVSE IR AT, HARR BT IR OB TS Ao B0 R I B Ut
WI A B R T L BUE U5, THR 8 R S5 RBAE NEAF 2, LA A E R . BheR B A RA
(1 factorial() pR £ HIVEAA 7] o

var fact6 = memfactorial(6);
var fact5 = memfactorial(5);

var fact4 = memfactorial(4);

This code returns three different factorials but makes a total of eight calls to memfactorial(). Since all of the
necessary calculations are completed on the first line, the next two lines need not perform any recursion because

cached values are returned.

IEARAD IR [B] = ASASRI B e, {H 8L I] memfactorial()BR%/\ K. BESR T D6 B2 1) VT LA /0 25 —
IS R 5E R T, B4R AT AN YESE, A ELAEIR G A7 P K A

The memoization process may be slightly different for each recursive function, but generally the same pattern
applies. To make memoizing a function easier, you can define a memoize() function that encapsulates the basic

functionality. For example:

il I DR g st U1 e T s A AN [), (EL A A AR R e g T — AN R B R I R s i % 5
PRa] BLg A memoize() BRI 2EFEA T RE . 1 i

function memoize(fundamental, cache){
cache = cache || {};
var shell = function(arg) {
if (!cache.hasOwnProperty(arg)){
cache[arg] = fundamental(arg);
H
return cache[arg];
I8

return shell;

This memoize() function accepts two arguments: a function to memoize and an optional cache object. The
cache object can be passed in if you'd like to prefill some values; otherwise a new cache object is created. A shell
function is then created that wraps the original (fundamental) and ensures that a new result is calculated only if it

has never previously been calculated. This shell function is returned so that you can call it directly, such as:

It memoize() & EHM IS H: — AN IR BRI o8 BN — AN LI A7 R B o WnARIRIT S — L84,
WARALN—ADTUE XINEAFRT G HMEHR QRSB AR R . RIGEIE—DNINTREL KRG
¥ (fundamential) BAGEA, ORI 25— DNIEHT ARG S A AN A SFOERA T oA THELEE R T
UEANTE R BOR H], AR EUE R E, Bl

//memoize the factorial function

var memfactorial = memoize(factorial, { "0": 1, "1": 1 });
//call the new function

var fact6 = memfactorial(6);

var fact5 = memfactorial(5);

var fact4 = memfactorial(4);

Generic memoization of this type is less optimal that manually updating the algorithm for a given function
because the memoize() function caches the result of a function call with specific arguments. Recursive calls,
therefore, are saved only when the shell function is called multiple times with the same arguments. For this reason,
it's better to manually implement memoization in those functions that have significant performance issues rather

than apply a generic memoization solution.

Sl FH)3 b Al N SR ST LEARAR AL, DDA memoize() R B 22 A7 5 2 401 pR SO T 5 R
AL LLE —ASH 2 WA AhFe e BN A RETT AN 8] G R AR Fe s BN fa A7 e I, B A
PRARIE VAN B EHIEX P [ia SEE5 R 7)o Bk, 25—l IR e B A BB TR RS IR U, f AR
6 oy B N SEIL &

Summary &4

Just as with other programming languages, the way that you factor your code and the algorithm you choose
affects the execution time of JavaScript. Unlike other programming languages, JavaScript has a restricted set of

resources from which to draw, so optimization techniques are even more important.

IEA AR S, ARSI SRRk HISE 0 JavaScript [RISATINH] o 5 H A GRS 5 AN F] 12
JavaScript A I BEUEATER, T AL BOR B HE 2,

* The for, while, and do-while loops all have similar performance characteristics, and so no one loop type is

significantly faster or slower than the others.

for, while, do-while fEFIVERERFPEAL, AN Ll sE PRl s pe

* Avoid the for-in loop unless you need to iterate over a number of unknown object properties.

BRARRELEAGE P — MR PERFIIR R, WA ZAEH] for-in 34

* The best ways to improve loop performance are to decrease the amount of work done per iteration and decrease

the number of loop iterations.

BRI RE IR S A INE R D BRI e R, IR AR R AL

* Generally speaking, switch is always faster than if-else, but isn’t always the best solution.

— R, switch BUELL if-else BEER, (H A RS B IO fig v 7 7%

» Lookup tables are a faster alternative to multiple condition evaluation using if-else or switch.

LRSI, ARIELL ifeelse B switch HHL,

* Browser call stack size limits the amount of recursion that JavaScript is allowed to perform; stack overflow

errors prevent the rest of the code from executing.

D) 4 PR U T e RS R 17 388 SV AE JavaScript FHEIN T s AR S SCHARAUE AN BE I AT

* If you run into a stack overflow error, change the method to an iterative algorithm or make use of memoization

to avoid work repetition.

BRI B — R AR, R 5B O — IS AR B (il 35 7T Lt S = 2 AT

The larger the amount of code being executed, the larger the performance gain realized from using these

strategies.

BAT AR SRR, A P X S T SR P RESR T R] il

/ff‘/v‘

¥ Strings and Regular Expressions F4%F &
ANE R IE 5

Practically all JavaScript programs are intimately tied to strings. For example, many applications use Ajax to
fetch strings from a server, convert those strings into more easily usable JavaScript objects, and then generate
strings of HTML from the data. A typical program deals with numerous tasks like these that require you to merge,
split, rearrange, search, iterate over, and otherwise handle strings; and as web applications become more complex,

progressively more of this processing is done in the browser.

JLT T JavaScript R /7 #0 FAT H B4R SR AE 00, VE2 N R F] Ajax MRS 3REL 777 £
R IXLE P H e Wl BE 5 1) JavaScript 15, SR Ja WA A HTML P45 d5 o — AN SR KRS 7 i 224k
BORTREXFERIMES, &0F, ok, SOFHEs), R, P, DU R B A5 i o BB 00N TR
RO, ORI ZS 1) AT 55 K A 30 S 2 58 Bl o

In JavaScript, regular expressions are essential for anything more than trivial string processing. A lot of this
chapter is therefore dedicated to helping you understand how regular expression engines internally process your

strings and teaching you how to write regular expressions that take advantage of this knowledge.

1t JavaScript "', EMIRIA R AANTT AR VY, 8 g B B) AT R AR B . AR EAL AR
i e 5 B 6 1 A L E T a5 | BE AR PR A5 e A S B, DR e) X e S R S TR)RR 5

Also in this chapter, you'll learn about the fastest cross-browser methods for concatenating and trimming
strings, discover how to increase regex performance by reducing backtracking, and pick up plenty of other tips

and tricks for efficiently processing strings and regular expressions.

WA TNE, GERERIOCTIER . B8 AT R R IES 3 W85 ik, IRZRE W id i gD [P ok 4
FIEWRGAIPERE, JFBREE T 280 TR R B A5 3 AE MR 87

String Concatenation P &% #

String concatenation can be surprisingly performance intensive. It's a common task to build a string by
continually adding to the end of it in a loop (e.g., when building up an HTML table or an XML document), but

this sort of processing is notorious for its poor performance in some browsers.

TR HERGRIL M T RE R oK . TR — MESEE —MEI, 8 PR R R AR I A, K el
AR (i, G HTML R > XML SCRD |, (H SR ARBAE — 2o U5 ds_E R IURRE
SN

So how can you optimize these kinds of tasks? For starters, there is more than one way to merge strings (see

Table 5-1).

IRANREFACIERAT ISR ? 50, T2 Mk LS 758 (R 5-1 .

Table 5-1. String concatenation methods

Method Example
The + operator str = "a" + "b" + "¢";
The += operator str = "a";
str += "b";
str += "¢";
array.join() str = ["a", "b", "c"].join("");

string.concat{) str = "a";

str = str.concat("b", "c"};

All of these methods are fast when concatenating a few strings here and there, so for casual use, you should go
with whatever is the most practical. As the length and number of strings that must be merged increases, however,

some methods start to show their strength.

MER DRI, PTATIX SR AR AR, AT, AR AR . AR TR IK
JEABCREINZ)5, AL BTG o B S

Plus (+) and Plus-Equals (+=) Operators JiF1INZETF#/E

These operators provide the simplest method for concatenating strings and, in fact, all modern browsers except

IE7 and earlier optimize them well enough that you don't really need to look at other options. However, several

techniques maximize the efficiency of these operators.

X LCERAERF R AL T e A J I e R B 73k, S b, BR TE7 e AR i A7 BRI B 245 0T s A A0 A5
RAF, PrORANT 2GR AR T ik SR, A7 e AR n] DL KBRS B iy XS R A (R R0

First, an example. Here's a common way to assign a concatenated string:
WG, BT SRR BRI 5
str += "one" + "two";
When evaluating this code, four steps are taken:
HEACHS PAT IR, R A DA D B
1. A temporary string is created in memory.
WAER B T MmN 545 Hi
2. The concatenated value "onetwo" is assigned to the temporary string.
I b 7475 BB R 4T ““onetwo™
3. The temporary string is concatenated with the current value of str.
I 745 R 5 st IR EAT 24
4. The result is assigned to Str.

25 BT stro

This is actually an approximation of how browsers implement this task, but it's close.

TXHEA Ll A 30 W 58 X AR 55 I I R

The following code avoids the temporary string (steps 1 and 2 in the list) by directly appending to Str using

two discrete statements. This ends up running about 10%—40% faster in most browsers:

I T AR A T AN B e A 1 B N A INAE str LB TR E AR R (AR 1 BRI 2
) o AERZHEN A XA IR 10%-40%:

str +="one";

str +="two";

In fact, you can get the same performance improvement using one statement, as follows:

Sebr b, ARAT DU — AT A S S DUX R A PERESR T, T

str = str + "one" + "two";

// equivalent to str = ((str + "one") + "two")

This avoids the temporary string because the assignment expression starts with Str as the base and appends
one string to it at a time, with each intermediary concatenation performed from left to right. If the concatenation
were performed in a different order (e.g., Str = "'one"" + str + ""two""), you would lose this optimization. This is
because of the way that browsers allocate memory when merging strings. Apart from IE, browsers try to expand
the memory allocation for the string on the left of an expression and simply copy the second string to the end of it
(see Figure 5-1). If, in a loop, the base string is furthest to the left, you avoid repeatedly copying a progressively

larger base string.

otk G 1A I AT R, DA RIE AT L EL str W FERE, — BN — 7R, WS A KK
B, WURSCEIERT (B, str="one" +str + "two") , PRERFIXFA. X500 B34 I T4 5
I M BE NAF JEAR Ko BR TE LAAE, e ae 22l d R ARIA X i v 4T ER IR A A, SR) o o — A7
PR IR R (W 5-1) o WERFE MR, AT AL T oA, At n] LAE S 2 IR
AR PR FEA 775 5 o

31="mne";
$1=M-; e {
RET R P w ;
sl ——————— 2 ————>
i3 >

Figure 5-1. Example of memory use when concatenating strings: sl is copied to the end of s2 to create s3; the base

string s2 is not copied

Bl 5-1 ERETAT BRI DL s1 EHIE]) 2 IR ETE R s3; FEA AT s2 WA i =l

These techniques don't apply to IE. They have little, if any, effect in IE8 and can actually make things slower
in IE7 and earlier. That's because of how IE executes concatenation under the hood. In IE8's implementation,
concatenating strings merely stores references to the existing string parts that compose the new string. At the last
possible moment (when you actually use the concatenated string), the string parts are each copied into a new
"real" string, which then replaces the previously stored string references so that this assembly doesn't have to be

performed every time the string is used.

KA TFAEN T 1E. ENDLTFBAEMAE, 15 188 LI IB7 AR IIRA E . X5 IE T
BTN G, 75 TE8 v, FERE A5 B FUZ G N A R 745 B (0 438 0 AR HR IS L o TR R I
Z) CAPRE AT RS R AT R & 717 B A O 5 DB — AN < R 7R/ R, ARG
HEBARGS AT AR 51, BT RAIF AR AR RS F A R I 3 A 45 DT R A

IE7 and earlier use an inferior implementation of concatenation in which each pair of concatenated strings
must always be copied to a new memory location. You'll see the potentially dramatic impact of this in the
upcoming section "Array Joining". With the pre-IE8 implementation, the advice in this section can make things
slower since it's faster to concatenate short strings before merging them with a larger base string (thereby avoiding
the need to copy the larger string multiple times). For instance, with largeStr = largeStr + s1 + s2, IE7 and earlier
must copy the large string twice, first to merge it with s1, then with s2. Conversely, largeStr +=s1 + s2 first
merges the two smaller strings and then concatenates the result with the large string. Creating the intermediary

string of S1 + s2 is a much lighter performance hit than copying the large string twice.

TE7 F S L (R 30 S 2 A0S 12 7 7 A IS T SERSRE (R SE LTV, BRI — X P A5 e AR T A T A 3 — Bk
BRI NAE o ARSAE T K LiBe a9 P oA B EIEE R BRI, BHXS TE8 Z AT sc il i, A
TR BRI A NS, P& I 2 AN AT R PO — SR PR B B GG 22 T USSR 7 4
H) o B, largeStr = largeStr +s1 +s2 16, 75 IE7 FIEE RRCAT, A0 AN K745 H 85 DUPTIK,
HE sl G, ARE Y 2 A 9F. Mk, largeStr= sl +s2 FGK AN NARF R AR, RIERK 4RI
[FIZ5 K7 AT R o B R FATE s1 + 82 HNIREE VUK AFERARILE, PRREm i 2N 2.

Firefox and compile-time folding Firefox f45 A& H

When all strings concatenated in an assignment expression are compile-time constants, Firefox automatically

merges them at compile time. Here's a way to see this in action:

FEMAE RIS A h T T4 B R T B &, Firefox HAMM/ESR LD SIFEAN]. XA —
NIREAI R B 1R

function foldingDemo() {
var str = "compile" + "time" + "folding";
str += "this" + "works" + "too";
str = str + "but" + "not" + "this";

H

alert(foldingDemo.toString());

/' In Firefox, you'll see this:

// function foldingDemo() {

/I var str = "compiletimefolding";
/I str += "thisworkstoo";

/I str=str + "but" + "not" + "this";

/1

When strings are folded together like this, there are no intermediary strings at runtime and the time and
memory that would be spent concatenating them is reduced to zero. This is great when it occurs, but it doesn't help

very often because it's much more common to build strings from runtime data than from compile-time constants.

AT R IXFE A A R, T AT I BT I A A T DGR AT I TR) AT A7) DA b 31 %
XA IHREAR W TAGES, (HEIFALHFEAE, DU I3 MISAT IR G 74 £ 110 AN 2 MG 300

Array Joining U BRLZE

The Array.prototype.join method merges all elements of an array into a string and accepts a separator string
to insert between each element. By passing in an empty string as the separator, you can perform a simple

concatenation of all elements in an array.

Array.prototype.join JTVAAGEA I I L G HF MNP, FRAEREAD LR Z A — DN Ba R T
Hio AL — N2 AT R AR N 0 B AT, VR TT LA PR S R BT e SRR R

Array joining is slower than other methods of concatenation in most browsers, but this is more than

compensated for by the fact that it is the only efficient way to concatenate lots of strings in IE7 and earlier.

FERZHON WS b, BOAIRES LR 747 B AR ik s g, (ER st b, g — Bl 2595, £ IET
SRR g e R A s g AR

The following example code demonstrates the kind of performance problem that array joining solves:

I s B CHEE s T R] AR ALIDC & Ak e (4 i i) 7

var str = "I'm a thirty-five character string.",
newStr ="",

appends = 5000;

while (appends--) {

newStr += str;

This code concatenates 5,000 35-character strings. Figure 5-2 shows how long it takes to complete this test in

1E7, starting with 5,000 concatenations and then gradually increasing that number.

BEARRT 2 5'000 N SEH 35 55 . | 5-2 WontHAE IE7 Fh AT BEIRRaT 75 I a], - A 5'000 VX3
FeIth, ARG I e .

35,000
12,352

g
15537
E

5,000 3,055

6

5,000 ' 10,000 ' B0 20,000
Appends

Figure 5-2. Time to concatenate strings using += in [E7

5-2 1E7 " =5 245 o B F I)

IE7's naive concatenation algorithm requires that the browser repeatedly copy and allocate memory for larger

and larger strings each time through the loop. The result is quadratic running time and memory consumption.

TE7 R IR SR SR U S ARG R I R v s 52 b A BORBOR 1 4% R 8 DURI 3 B AT o 45 2 DAY
J7 R E I IS AT IR TR A AE T AE

The good news is that all other modern browsers (including IE8) perform far better in this test and do not
exhibit the quadratic complexity that is the real killer here. However, this demonstrates the impact that seemingly
simple string concatenation can have; 226 milliseconds for 5,000 concatenations is already a significant
performance hit that would be nice to reduce as much as possible, but locking up a user's browser for more than

32 seconds in order to concatenate 20,000 short strings is unacceptable for nearly any application.

L R T AR R DA 4 (48 TES) XA R R 4f, ANa BIPJ7 KR A 1,
RIE MR TG AR, BEREFI0 1AL S0 745 ep IR BT AR R . 5'000 JOERT & 226
O MRENVER L T, R AT RE AR IR, HBIUE A KA 32 8, U
TR 200000 MR TDAATAT YRR ek e AN BEREZ) o

Now consider the following test, which generates the same string via array joining:

DUAEZG RS R AN, e A AR A 1l R R 74 R

var str = "I'm a thirty-five character string.",
strs =[],

newStr,

appends = 5000;

while (appends--) {

strs[strs.length] = str;

}

newStr = strs.join("");

Figure 5-3 shows this test's running time in [E7.

K 5-3 on i IE7 BB AT b dilsal B FH Ay g)

w. 0
30 - 3

B

s 20

=
10 - 10
0 . : . ,

5,000 10000 15,000 20000
Appends

Figure 5-3. Time to concatenate strings using array joining in IE7

5-3 IE7 " B & B B 2 447 55 T FH IR ek 1]

This dramatic improvement results from avoiding repeatedly allocating memory for and copying progressively
larger and larger strings. When joining an array, the browser allocates enough memory to hold the complete string,

and never copies the same part of the final string more than once.

3K LB (1 SO 45 2 DN D S 1 A (K A7 20 FO R LR (745 o o 0B — N4
D 55 5 0 BC AL 8 K B A T TAE IS AT o AN — Ot #s DU & 75 8 1 R — 3B 73

String.prototype.concat

The native string concat method accepts any number of arguments and appends each to the string that the
method is called on. This is the most flexible way to concatenate strings because you can use it to append just one

string, a few strings at a time, or an entire array of strings.

JSUAE AT R R PR B AT R (NS5 IR DS ECHE e W R B0 745 i B IR T
5 e R RS AT %, RUOAAR AT AT E IR AN A4 i, 80— B LA P AT, 80— A Se B 775
K.

// append one string

str = str.concat(s1);

// append three strings

str = str.concat(sl, s2, s3);

// append every string in an array by using the array
// as the list of arguments

str = String.prototype.concat.apply(str, array);

Unfortunately, concat is a little slower than simple + and += operators in most cases, and can be substantially
slower in IE, Opera, and Chrome. Moreover, although using concat to merge all strings in an array appears
similar to the array joining approach discussed previously, it's usually slower (except in Opera), and it suffers
from the same potentially catastrophic performance problem as + and += when building large strings in IE7 and

earlier.

A, RZHNEDL N concat HUR HLJ+AI+=18 L%, i HLAE IE, Opera Al Chrome b KA. It
Gb, BARAEH] concat & IR MPIAT 743 FR BRI AT IR e B AR ET = A Z, (Hil e e LY
(Opera 541 » 1M HE 9 R KAEVE KV RE R, 1E 1 TE7 A0SR A P+ A+ =0 K745 R

Regular Expression Optimization 1EZZiE 44k

Incautiously crafted regexes can be a major performance bottleneck (the upcoming section, "Runaway
Backtracking" on page 91, contains several examples showing how severe this can be), but there is a lot you can
do to improve regex efficiency. Just because two regexes match the same text doesn't mean they do so at the same

speed.

FH P G 55 1)2 At 3 e RE R) 2 B St DAL [l) R 2840 I X 2 4 ™
AR, HIEA R 2 AT ASGHE R MR IE AR B 5 o WA T) S DE E AR 7] R SCAR I AN S A A AT
HAT[R S5 R

Many factors affect a regex's efficiency. For starters, the text a regex is applied to makes a big difference
because regexes spend more time on partial matches than obvious nonmatches. Each browser's regex engine also

has different internal optimizations.

VP2 N ZE NIZGE A RCR . B, IEMIZRIE GG R SCAT- 22075, #873 UL IR BE e 4 AN UL RS i
JH IR Vo) B o AR W25 P L U0 55 B AT AN [R] 1 P9 AR AR AE

Regex optimization is a fairly broad and nuanced topic. There's only so much that can be covered in this
section, but what's included should put you well on your way to understanding the kinds of issues that affect regex

performance and mastering the art of crafting efficient regexes.

IENZGE A AR 2 AN BN G R AT R PTRE, Ay X L8 Py 77 B - B
) LE U8 P B 19 25 T 1) ORI 548 9 5 v ROIE MBI 2R

Note that this section assumes you already have some experience with regular expressions and are primarily
interested in how to make them faster. If you're new to regular expressions or need to brush up on the basics,
numerous resources are available on the Web and in print. Regular Expressions Cookbook (O'Reilly) by Jan
Goyvaerts and Steven Levithan (that's me!) is written for people who like to learn by doing, and covers JavaScript

and several other programming languages equally.

TR, ARG Ca R IENFREAARALR, FEOCE T AE e AT, an RS 1 Wk A E
F, WHLTEL] N, W EAE EAEFL %R, (Regular Expressions Cookbook) (O'Reilly)

Fi Jan Goyvaerts I Steven Levithan (ASCAEF !) ARLE 55 TS AW S, i T JavaScript F1ILAD
MRS .

How Regular Expressions Work 1E M|k T/E R #

In order to use regular expressions efficiently, it's important to understand how they work their magic. The

following is a quick rundown of the basic steps a regex goes through:

N T A ROAE R ENRIA S, AR B AT AR B . R 2 I WRA AL P FE AL B

Step 1: Compilation

When you create a regex object (using a regex literal or the RegExp constructor), the browser checks your
pattern for errors and then converts it into a native code routine that is used to actually perform matches. If you

assign your regex to a variable, you can avoid performing this step more than once for a given pattern.

BRI T A EMRERATRL T G EN AR LR RegBxp HIEED) , MM
PRIVBEHR BT B SRR e e — AU IR, P THATIEIE T4 1SR R LE M3 s
AR, R DU T T I

Step 2: Setting the starting position

Fob WERIGAE

When a regex is put to use, the first step is to determine the position within the target string where the search
should start. This is initially the start of the string or the position specified by the regex's lastindex property, but
when returning here from step 4 (due to a failed match attempt), the position is one character after where the last

attempt started.

B ANENEGEBNE I, B G EE H AR 7R B AT RO E . B TAT R R AR, 5]
& HIENZIE A lastindex J& PEARE, (H2 G NPT R H 21X BT IHE (RO 22 UL BE RO tbfr
B T n R A A B HE A AT E .

Optimizations that browser makers build into their regex engines can help avoid a lot of unnecessary work at
this stage by deciding early that certain work can be skipped. For instance, if a regex starts with », IE and Chrome
can usually determine that a match cannot be found after the start of a string and avoid foolishly searching
subsequent positions. Another example is that if all possible matches contain X as the third character, a smart
implementation may be able to determine this, quickly search for the next X, and set the starting position two

characters back from where it's found (e.g., recent versions of Chrome include this optimization).

M EAs) R IE IR G B A NE A, AR B i i R B — S AN E AR Bl
UER — AN IEWEIE ATk, TE A1 Chrome 38 % A BT 7E 7445 B A6 07 B FR 17 RERE VLIS, SR mT gt b B 28
WARRF S E .) AT ILECSH = AN TS x MFAT R, MBI INEZ e E] x, K5 AR
SO B IS AT (i, I Chrome ARASSEHL TIXARLAL) o

Step 3: Matching each regex token

= DL IENIZRIE oo

Once the regex knows where to start, it steps through the text and the regex pattern. When a particular token
fails to match, the regex tries to backtrack to a prior point in the match attempt and follow other possible paths

through the regex.

NG BARAARAA AT E, e A H AR SCARFIE N &R AR . =M 7oL S
P I oYU s W e o S TR B 1l 1 0 (VAT W PP 9 NI oYU s WS T s e 2

Step 4: Success or failure

EALp AN A TR

If a complete match is found at the current position in the string, the regex declares success. If all possible
paths through the regex have been attempted but a match was not found, the regex engine goes back to step 2 to
try again at the next character in the string. Only after this cycle completes for every character in the string (as

well as the position after the last character) and no matches have been found does the regex declare overall failure.

BRAE T AT R A AL A BB e A UL Re, I8 AENERE S E A e o R NI S BT] g
R e T U (S Pt S 957 b LY VP |7 S e s W e =3[R e i 2 S 5 1 e s G T =
e PR BRI (DRGNP R AL ED AR TIXFEE R Ja, BT ez It
Be, A8 D3 2 B AT A R UL

Keeping this process in mind will help you make informed decisions about the types of issues that affect regex

performance. Next up is a deeper look into a key feature of the matching process in step 3: backtracking.

ARSI I R AT Bl T4 B At G A 5 i 1 DU S B (e R SR T o e T SR FRAT R AT 2 =
VLR R DG K [0

Understanding Backtrack FE£# A3

In most modern regex implementations (including those required by JavaScript), backtracking is a
fundamental component of the matching process. It's also a big part of what makes regular expressions so
expressive and powerful. However, backtracking is computationally expensive and can easily get out of hand if
you're not careful. Although backtracking is only part of the overall performance equation, understanding how it
works and how to minimize its use is perhaps the most important key to writing efficient regexes. The next few

sections therefore cover the topic at some length.

FER 2 BIUACIENIZE S (4045 JavaScript Frgif)) » (RIS VLS RE (I FEAR AL ST 70 . AR K
FESE b2 TR RAA S S L A K (KRR o R0, (R SACA & B, ERARANIE /N ORI 2 2 R A
BRI R AR PERE I ME— R 38, BRI TARJR B, DAR Al j A F AR, W7 RS g 5 v RE Wik
At S e PRI) L AR I XA 1

As a regex works its way through a target string, it tests whether a match can be found at each position by
stepping through the components in the regex from left to right. For each quantifier and alternation, a decision
must be made about how to proceed. With a quantifier (such as *, +?, or {2,}), the regex must decide when to try
matching additional characters, and with alternation (via the | operator), it must try one option from those

available.

A IENRGE A H AR AT 8 N, e e B BN E MZIE AR 5y, AEREANALE B
REAREH S —ANILHS e X T8RRI 5L, HRA R AT AR ELHEAT o an ot — AN Gfan, +2,
(2,0 5 IENRGE b 20k g AT I 2L BC B 2 (74 W RGB R 70 50 GEXRAERT) » RN
SERE I kR AN REAT 2

Each time the regex makes such a decision, it remembers the other options to return to later if necessary. If the
chosen option is successful, the regex continues through the regex pattern, and if the remainder of the regex is also
successful, the match is complete. But if the chosen option can't find a match or anything later in the regex fails,
the regex backtracks to the last decision point where untried options remain and chooses one. It continues on like
this until a match is found or all possible permutations of the quantifiers and alternation options in the regex have
been tried unsuccessfully, at which point it gives up and moves on to start this process all over at the next

character in the string.

B IE WA B X e, WA L E RS, EaictE NI DLReRR R R . sk
I JT G VRRC S, TR WIRIR R AR S 1 IR R A OBR, WSR3 VR) T A VL BC R4S
W o ARFEWERPTIERE N7 AR REAR DA NVLAS, B8 Ja R I ULRC BRI T, IE TR R [l 2 e s
ANRFT, RIGAETIR IIET LR A EAREEXFE N &, HEHRP]—AULH, s i M7 Sk
ISR AR R R I E N QU S/ 8 €15 b U S/ R 2 22 2 12 b U I 53 ¥ (VA W9 Nt e i 0
A IR

Alternation and backtracking 43 32 Fl[[3]

Here's an example that demonstrates how this process plays out with alternation.

N TR IR e AR B S

/h(ellolappy) hippo/.test("hello there, happy hippo");

This regex matches "hello hippo" or "happy hippo". It starts this test by searching for an h, which it finds
immediately as the first character in the target string. Next, the subexpression_r(ello|appy) provides two ways to
proceed. The regex chooses the leftmost option (alternation always works from left to right), and checks whether

ello matches the next characters in the string. It does, and the regex is also able to match the following space

character. At that point, though, it reaches a dead end because the h in hippo cannot match the t that comes next
in the string. The regex can't give up yet, though, because it hasn't tried all of its options, so it backtracks to the
last decision point (just after it matched the leading h) and tries to match the second alternation option. That
doesn't work, and since there are no more options to try, the regex determines that a match cannot be found
starting from the first character in the string and moves on to try again at the second character. It doesn't find an h
there, so it continues searching until it reaches the 14th character, where it matches the h in "happy". It then steps
through the alternatives again. This time ello doesn't match, but after backtracking and trying the second

alternative, it's able to continue until it matches the full string "happy hippo" (see Figure 5-4). Success.

IEIE I ZIE UL AC “hello hippo” & “happy hippo”. Ml JF4h, EEA K> h, HARTHHRE AT
B UFRIE b, BSLZIBER S T . B ok, FRIEI Cellojappy) $AL T PIAN LRI, 1T FA 2Lk B
JACIAEI (O SCRFER AN R EAT) , KA ello A FULECFERF R IR —NF0F. SEILhl, ARG
TR A EHE T 5 R 25k o AR i B ESE T 2EIIA], 24 hippo P IK) h ANREDLRC 4 Hi v
() — ATt BRI IE NIRRT, B EIE A SR A kBl JS & R B 5 — A
R fl (EEVLHC T 1 7Rk h Z JF AL E B JF22 Ve Re s — AN Sk I, AH 2 8AT ey, i HAR
HHEZIIEIUT, BT AE WS AN ATAF 85 (158 — A PR AT RC R AN B Th i, B e S A
FEIFUG, BT AR, CBERE h, FrRURgket Gk, HEIH 14 AN FREA], B ILE happy 1T
A he BRJEEFFIRIEA AN SO PR IXIR ello ARAEVLHL, A2 558 ko 3 fvh, EULEL T84

7 53 “happy hippo” (Ul 5-4) . VCECEIN T

[Match attempt at character 1:
/h{ello|appy)_hippo/

Backtrack

hgllg_ihere, happy hippo

[Match attempt at character 14:
IIJIEE;EE[] hippo/

backtrack

hello there, happy hippo,,
Tailwe FT

e

Figure 5-4. Example of backtracking with alternation

5-4 4y 3[Rl -5

Repetition and backtracking E& 5[BI¥

This next example shows how backtracking works with repetition quantifiers.

A s T R R [

var str = "<p>Para 1.</p>"+
"" +
"<p>Para 2.</p>" +
"<div>Div.</div>";

/<p>.*<\/p>/i.test(str);

Here, the regex starts by matching the three literal characters <p> at the start of the string. Next up is .*. The
dot matches any character except line breaks, and the greedy asterisk quantifier repeats it zero or more times—as
many times as possible. Since there are no line breaks in the target string, this gobbles up the rest of the string!
There's still more to match in the regex pattern, though, so the regex tries to match <. This doesn't work at the end
of the string, so the regex backtracks one character at a time, continually trying to match <, until it gets back to the
< at the beginning of the </div> tag. It then tries to match V (an escaped backslash), which works, followed by p,
which doesn't. The regex backtracks again, repeating this process until it eventually matches the </p> at the end of
the second paragraph. The match is returned successfully, spanning (¥4 ¥E: KM/ scanning) from the start of

the first paragraph until the end of the last one, which is probably not what you wanted.

MR FoRmt VLS T 775 B T AR I = AN RE<p>. SRR * o mi 5 DLRCER AT AT UM 74
BGREATAERRRR R TR IX——IL R 2 A D HAR 755 8 P AT AT 4T, KA
R F AR AT L AN IE NG SR A B 2 AR T ZE UL, P BAIE AR (2L id<. "EAE Y
PP R RILHCANEE), FrEVERHRIBI— 74T, dhsisalliic<, BERVE R R</div>irEf<fiii. Rn
EEARILHY G SO ULEC& S, ARJEHE p, DCECAN ST, IENRGA R EEml], FE R, |
P BORENEL TN T </p>o VLRGP, ENF—BELH— HAfM 2 e MR, XTfg
AGERARE S R

You can change the regex to match individual paragraphs by replacing the greedy * quantifier with the lazy
(aka nongreedy) *?. Backtracking for lazy quantifiers works in the opposite way. When the regex /<p>.*?<\/p>/
comes to the .*?, it first tries to skip this altogether and move on to matching <\/p>. It does so because *? repeats
its preceding element zero or more times, as few times as possible, and the fewest possible times it can repeat is
zero. However, when the following < fails to match at this point in the string, the regex backtracks and tries to
match the next fewest number of characters: one. It continues backtracking forward like this until the <\/p> that

follows the quantifier is able to fully match at the end of the first paragraph.

PRT LOCRE IE AR A rp i S AR S A+ O Wi (XA AR SRAE) i) *2, DLULHECARANB o Mttt o 1] fr]
AR AR By kAT o 24 IR WRIE I/ <p> *2<Vp>/HEBE R ¥, & 5G 2l A i B SR = 4k £ UL i <Vp>.
ER AWMU R AL RS R, AHRATREADEE, AT RED A A et i A E k. HaE, b
JE I<PEFAF I) EDURCRIG, IENRGE 2l DN PR A4 E4ReRIX
FE 1 TR 0 28— B AR, A LR 1A e T PR <Vp>19 2158 42 VL .

You can see that even if there was only one paragraph in the target string and therefore the greedy and lazy

versions of this regex were equivalent, they would go about finding their matches differently (see Figure 5-5).

AR H AR5 8 2T DBk, ART AR B E N ZEIE SR SR RRA A FRAS 2 A 1), (HoR Al AT 22
IR REA R i 5-5) .

Target string:
<p>Paral. </p>

Greedy quantifier: Lazy quantifier:
1<p>.*<\p>/i /<p>."1<\Vp>/i
12345678 123 4 56178
1. 1.<
L r
1<p> EN
4, <p> 4.
5 <p> [backtrack] 5.
£ <P 6.
1. <p> batktrack] 1.
E <p> 8
9. <p> [backtradk] &,
10, £p> 0.
1, <p> [backtrack] 1.
11 <p> 12.
13 <p> 13.
14, <p> 4.
>
>

w SINEE4 16.
113 L] S6TH 17.
Match found in 16 steps. 18,

123 4 5678
Match found in 22 steps,

Figure 5-5. Example of backtracking with greedy and lazy quantifiers

Bl 5-5 [m3] 5 5 A] M1 1]

Runaway Backtracking [B]# 5%

When a regular expression stalls your browser for seconds, minutes, or longer, the problem is most likely a
bad case of runaway backtracking. To demonstrate the problem, consider the following regex, which is designed
to match an entire HTML file. The regex is wrapped across multiple lines in order to fit the page. Unlike most
other regex flavors, JavaScript does not have an option to make dots match any character, including line breaks,

so this example uses [\s\S] to match any character.

AN ERRE L - ERD, o P els SR TR, i 05 DR AR R 2 (R 242 o Ay 13 B L)
M, SR IENZRIEX, M HPSZRITACEEA HTML S0, ERIE R 2 AT 2 0 T 354 DU i
INe MBI K 2 BOE WK IEATBHE, JavaScript EAA I A4 2 S ULEAE R 5, AHERATRE, Frilt
1] rb ADS\STUE AT 575

/<html>[\s\S]*?<head>[\s\S]*?<title>[\s\S]*?<V/title>[\s\S] *?<\Vhead>

[\s\S]*?<body>[\s\S]*?<Vbody>[\s\S]*?<Vhtml>/

This regex works fine when matching a suitable HTML string, but it turns ugly when the string is missing one
or more required tags. If the </html> tag is missing, for instance, the last [\s\S]*? expands to the end of the string
since there is no </html> tag to be found, and then, instead of giving up, the regex sees that each of the previous
[\s\S]*? sequences remembered backtracking positions that allow them to expand further. The regex tries
expanding the second-to-last [\s\S]*?—using it to match the </body> tag that was previously matched by the
literal <\/body> pattern in the regex— and continues to expand it in search of a second </body> tag until the end
of the string is reached again. When all of that fails, the third-to-last [\s\S]*? expands to the end of the string, and

SO on.

VEIENZGA VLR IE R HTML 345 83 I8 CAE R Af, B WER AR 7R f b A el MRiEnt, gt
SRR TR . Bl I</mtmI>FREEEK, A Adm— DOS\SIF PR R T R IR, DU FEAS BLBAT &
Bl</ntmI>Fr28, SR IFRATHET, IENRE AR EE LT Ns\SI*2BAZE X M R A2 &, A8 eq 18t 259"
Ko IEMZIEA 2l EABIEER —AN\\ST*?2——] B VL HL</body>Fr28, w2 LA VL ACHE 1)k SRR
—A</body>br2E H B FAF R AR . HPTTR S IR T
R = DS\SIF PR R HR TR R IR, KIESHE.

The solution: Be specific fE®TiE: Bk

The way around a problem like this is to be as specific as possible about what characters can be matched
between your required delimiters. Take the pattern ".*?", which is intended to match a string delimited by
double-quotes. By replacing the overly permissive .*? with the more specific [""\r\n]*, you remove the

possibility that backtracking will force the dot to match a double-quote and expand beyond what was intended.

R] R PR DRI AE TR AT RE RAR LTS 0 W A5 2 TR P AT UL RE T e B an st 2" HT T UL e X5 |5
BWHIFK— A7 d e AR\ en AT T 982 1952, AL ER T I ol fe Ak A i LR B8, 2k
MR ILACG |, B AR 2R PO

With the HTML example, this workaround is not as simple. You can't use a negated character class like [<]
in place of [\s\S] because there may be other tags between those you're searching for. However, you can reproduce
the effect by repeating a noncapturing group that contains a negative lookahead (blocking the next required tag)
and the [\s\S] (any character) metasequence. This ensures that the tags you're looking for fail at every intermediate
position, and, more importantly, that the [\s\S] patterns cannot expand beyond where the tags you are blocking via

negative lookahead are found. Here's how the regex ends up looking using this approach:

7E HTML (15~ il e I EATE IR A TR o ARANBEAE I 538 A RN (<R \\S R A AE A R L R
R RE B RIS bR 2 o (HE, R AT OB I A — ARG DRI B RO, e S —Aalmi (B
FEF AT AR FIN\S] UERFAP) JOP4. KR IRA B EAR AR AR 2 R, AR5
B, [\\SIMCAE (RAE [FDBTL A o BEL2E (bR B8 A L BT AN BEREY JE o I R 5 6 IE ik ke
SRS

/<html>(?:(?!<head>)[\s\S])*<head>(?:(?!<title>)[\s\S])*<title>
(2:(7<Vtitle>)[\s\S])*<\title>(?:(?!<Vhead>)[\s\S])*<\/head>
(2:(71<body>)[\s\S])*<body>(?:(?!<Vbody>)[\s\S])*<Vbody>

(2:(?1<VhtmI>)[\s\S])*<Vhtml>/

Although this removes the potential for runaway backtracking and allows the regex to fail at matching
incomplete HTML strings in linear time, it's not going to win any awards for efficiency. Repeating a lookahead
for each matched character like this is rather inefficient in its own right and significantly slows down successful
matches. This approach works well enough when matching short strings, but since in this case the lookaheads may
need to be tested thousands of times in order to match an HTML file, there's another solution that works better. It

relies on a little trick, and it's described next.

BARIXPEAH R TR IR, JF SevF IEWIRIA UL A 7E 5 HTML 747 85 RGN, JLAR P I /)
HARKEREERR, FRENBCRIFRAT IR BOXFEN R ILAC A5 2 R ATIE S Z R, i HSsh

VEME i R AR 18 o VU ECRCRE 545 3 I e VA 2 AN, ELUL RS> HTML S AT e 5 ZE e F il BT
Ko THAN—Fifif T RELE, BT — /NS, T

Emulating atomic groups using lookahead and backreferences 1% Fi RTBERI)E |1 51 528 5140

Some regex flavors, including .NET, Java, Oniguruma, PCRE, and Perl, support a feature called atomic
grouping. Atomic groups—written as (?>...), where the ellipsis represents any regex pattern—are noncapturing
groups with a special twist. As soon as a regex exits an atomic group, any backtracking positions within the group
are thrown away. This provides a much better solution to the HTML regex's backtracking problem: if you were to
place each [\s\S]*? sequence and its following HTML tag together inside an atomic group, then every time one of
the required HTML tags was found, the match thus far would essentially be locked in. If a later part of the regex
failed to match, no backtracking positions would be remembered for the quantifiers within the atomic

groups, and thus the [\s\S]*? sequences could not attempt to expand beyond what they already matched.

—LEIE U FRIA G %, WINET, Java, Oniguruma, PCRE, Perl, SZHF—FiFR{EIR AL EME. 774l
GYE>..) (PR AT Ao FRiE) A5 RRE R IE R IR A ——AE il sk 4L R —
ANRFER R I o AFAE T 5 2 o 1 1 2k U o (AR T [) s A 5 5« X4 HTMIL G sk =X
[390 i B T AN T AR (R g R AR [\\ST*2 RS RN S 1K) HTML ARAC e sfE — AN 741
R FTRE I HTML AR 24 R I, IXIRICRCHEA B eie 7o AL E Ik A0 5 223 43 DL C 2k
W, R4 AR R A BTSRRI, DR \\ST* 2P A1 AN B i 1) U UT I P 5 R 2 b

That's great, but JavaScript does not support atomic groups or provide any other feature to eliminate needless
backtracking. It turns out, though, that you can emulate atomic groups by exploiting a little-known behavior of
lookahead: that lookaheads are atomic groups. The difference is that lookaheads don't consume any characters as
part of the overall match; they merely check whether the pattern they contain can be matched at that position.
However, you can get around this by wrapping a lookahead's pattern inside a capturing group and adding a

backreference to it just outside the lookahead.Here's what this looks like:

e TAEIIH AR . HiE, JavaScript AN SCRFIR T2, WATRAEHAD T ZEBRAN L Z R R . Ak, IR
A DA AT I R b T D AT R R s 2 TSR T A SRR, BURE AR A DT T
FErf, AHFETAT: EHERE A OO A BRSO S REAE AT A B VLR . SR, AT LLRETFIZ A, 7EAf 3R
A e —AHIEBAR, 7ERTIE A eam— MRS EEERE FIHEAFET

(?=(pattern to make atomic))\1

This construct is reusable in any pattern where you want to use an atomic group. Just keep in mind that you

need to use the appropriate backreference number if your regex contains more than one capturing group.

FEATFTURST ST S 5 L AR P XA G A AR T AT (o JUBEEAE, R BTG 2) 1) 5 L O
BERAR A IE M AR A 7 2 AR 4L

Here's how this looks when applied to the HTML regex:

HTML 1E 0208 A F AR J5 & 2 F

/<htmI>(?=([\s\S]*?<head>))\1 (2=([\s\S]*?<title>))\2(2=([\s\S]*?
<Vtitle>)\3(2=(]\s\S]*?<Vhead>))\d(?=([\s\S]*?<body>))\5

(2=([\s\S]*?<Vbody>))\6[\s\S]*?<\/html>/

Now, if there is no trailing </ntmI> and the last [\s\S]*? expands to the end of the string, the regex
immediately fails because there are no backtracking points to return to. Each time the regex finds an intermediate
tag and exits a lookahead, it throws away all backtracking positions from within the lookahead. The following
backreference simply rematches the literal characters found within the lookahead, making them a part of the

actual match.

PUE I R AT R Rl) </htmI> A8 2 e — DN \S\ST* PR R 7T SR 4R, IR WRIE FURE L2 R IR A
AR T BRI IEMZGE A ERR RSP RAR RS IR 1 ANATNE, A R E 5 B [z
o NN T 5]] SR R UL T IE S R A ORI AT, AR A SERR UL R —)

Nested quantifiers and runaway backtracking H#x& & #1[B] ¥ 5 72

So-called nested quantifiers always warrant extra attention and care in order to ensure that you're not creating
the potential for runaway backtracking. A quantifier is nested when it occurs within a grouping that is itself

repeated by a quantifier (e.g., (X+)*).

JITUS 5 B T B K SR AN /MLy, DU ORBEA A i [P 2 Lo iR) i 12 R A —
N ESPERERGMIAS BlEH*

Nesting quantifiers is not actually a performance hazard in and of itself. However, if you're not careful, it can
easily create a massive number of ways to divide text between the inner and outer quantifiers while attempting to

match a string.

IRER AT IEA G REEF . R, WARIRADNL, ERBESAEZRIEE AT LR, N
A RSN R A 2 8], A KHE MR SO T

As an example, let's say you want to match HTML tags, and you come up with the following regex:

Bt EBCURAULACH HTML AR%E, (R T 1 i i i A 5

/<(?:[/\>|H]|"[/\"]*H|V[/\V]*Y)*>/

This is perhaps overly simplistic, as it does not handle all cases of valid and invalid markup correctly, but it
might work OK if used to process only snippets of valid HTML. Its advantage over even more naive solutions
such as /<[>]*>/ is that it accounts for > characters that occur within attribute values. It does so using the second
and third alternatives in the noncapturing group, which match entire double- and single-quoted attribute values in

single steps, allowing all characters except their respective quote type to occur within them.

XBVRE TR, O EAREIEG AR B ETAT 15 DL A O RbRic, (HE B 2 HTML F B %
BT Alm 8. 5 EIAHME R /<[>, ERIEHAE T T IR >R . AR SR
EAMEIER AR =030, EATILEC G S ARG S B R PEE, BREF 2 K55 A AV AT
o

So far, there's no risk of runaway backtracking, despite the nested * quantifiers. The second and third
alternation options match exactly one quoted string sequence per repetition of the group, so the potential number

of backtracking points increases linearly with the length of the target string.

B H A B BAT IR RS S, B R 7R AU RRRE SR, 5 A =
I AF UL ANH 515 1A R P DATEE R 1w 880 H BE H AR 74 A K i e

However, look at the first alternative in the noncapturing group: [*>"""]. This can match only one character at

a time, which seems a little inefficient. You might think it would be better to add a + quantifier at the end of this

character class so that more than one suitable character can be matched during each repetition of the group—and
at positions within the target string where the regex finds a match—and you'd be right. By matching more than

one character at a time, you'd let the regex skip many unnecessary steps on the way to a successful match.

HZ, SEEAMRANE D03 >, BRI T4F, ALPATEECERIG T AR REA N AE
TR — AR o AL, XA SRR E R R T AL RC 2 T NPT T IEERIA S
GRS e = R st TP | S VA Sl w2/ VPR 159 0 £ 1 B B U A2 1LY TVE A e P SRR oY | B S e W d
DHUCRC A rh B Vi 2 A S AP IR

What might not be as readily apparent is the negative consequence such a change could lead to. If the regex
matches an opening < character, but there is no following > that would allow the match attempt to complete
successfully, runaway backtracking will kick into high gear because of the huge number of ways the new inner
quantifier can be combined with the outer quantifier (following the noncapturing group) to match the text that

follows <. The regex must try all of these permutations before giving up on the match attempt. Watch out!

BEAT A I Tl 50 Bl o 1) D R B S i 2y W T W SRAE ARIE AL L — <745, B R B>,
KT LA VEHE L 5E i, [Pt e BE ARZETE, DA P9 o8 Bl R AR oS B sl (RS AL 157 AR T B K
7y sz GRAEARRISRA 2 5D THANEEC<Z R IR SCA . TE R IR UAE e 283U DL BC 2 i b 2 >l o
HEFI G o 2220000 !

From bad to worse. MIFF| IR

For an even more extreme example of nested quantifiers resulting in runaway backtracking, apply the regex
/(A+A+)+B/ to a string containing only As. Although this regex would be better written as /AA+B/, for the sake
of discussion imagine that the two As represent different patterns that are capable of matching some of the same

strings.

KRB R P U KA A S5, KR A BN HIENRIE/(A+AH)+B/. BRIXA
IENFE S B/AA+B/RELS, 2 TR T, WA R A A BEREULAC A — A7 75 83 1K) 2 D B .

When applied to a string composed of 10 As ("AAAAAAAAAA"), the regex starts by using the first A+ to

match all 10 characters. The regex then backtracks one character, letting the second A+ match the last one. The

grouping then tries to repeat, but since there are no more As and the group's + quantifier has already met its
requirement of matching at least once, the regex then looks for the B. It doesn't find it, but it can't give up yet,
since there are more paths through the regex that haven't been tried. What if the first A+ matched eight characters
and the second matched two? Or if the first matched three characters, the second matched two, and the group
repeated twice? How about if during the first repetition of the group, the first A+ matched two characters and the
second matched three; then on the second repetition the first matched one and the second matched four? Although
to you and me it's obviously silly to think that any amount of

backtracking will produce the missing B, the regex will dutifully check all of these futile options and a lot more.
The worst-case complexity of this regex is an appalling O(2n), or two to the n*th power, where n is the length of
the string. With the 10 As used here, the regex requires 1,024 backtracking steps for the match to fail, and with 20
As, that number explodes to more than a million. Thirty-five As should be enough to hang Chrome, IE, Firefox,
and Opera for at least 10 minutes (if not permanently) while they process the more than 34 billion backtracking
steps required to invalidate all permutations of the regex. The exception is recent versions of Safari, which are
able to detect that the regex is going in circles and quickly abort the match (Safari also imposes a cap of allowed

backtracking steps, and aborts match attempts when this is exceeded).

N HIAE AN 10 A A U8RI 748 B (“FAAAAAAAAAA™) , TENIZRER G IS —A A+
THA 10 NERF . RJEIEMEERFE AR, RS A ARG — N7 REEAN 4R E
5, AHRBAEZM A T H o2 5w DA TLRT & M b — I, B IE N ZRIA X TFah 24k B.
WA, (HRIEARERTE, FOIEA V2 AR . WS A+ILRS 8 MFAF, BB A
AHICHE 2 DM FRFE B AR ? B 55— AICH 3 A, M AILE 2 4, HAIEE IR, XBARFER?
RAEPAMER TS, 55— A+ILHC 2 N7AT, 35 A AHILRC 3 DMFFT, A mERE S, 5
ANIEREC 1A, HAICE 4 4, UEAFRNE? BARIRIRIBALAKLTNAL 2 X015 mT DL BIAN AL
(1B, fH2 ENFEIA T 25 i st — RO RS A A X S TG (M It G E) ik A IR I L 1 2
P — A O2n), WA 2 1 n K07 o n FRFRHRIOKEE . 76 10 A A Kb Z Rk, IERIERA
2T 22 1024 IR A BB 52 DU E ARG, T SR 20 AN A, 2B R 31— F 7 LA 1254 A LLEEAE Chrome,
IE, Firefox, Il Opera %270 10 735 (USRI BEAEHLILED FH LAAL BIEE I =T DU 71)7 U Bl 9 LA HE R 1 5K
XM EFHESNALE o MBS EBRTY Safari, ‘& BESSRINIE A XN THEIR, JEPig 4 It
(Safari JEFRE T RN R, 28 EDERCSAR) «

The key to preventing this kind of problem is to make sure that two parts of a regex cannot match the same
part of a string. For this regex, the fix is to rewrite it as /AA+B/, but the issue may be harder to avoid with
complex regexes. Adding an emulated atomic group often works well as a last resort, although other solutions,
when possible, will most likely keep your regexes easier to understand. Doing so for this regex looks like

1((?=(A+A+))\2)+B/, and completely removes the backtracking problem.

T 258 o R 1 G A R L)25 3 A 30 43 A B 7445 8 1 [— 0 4 A T UC IR o XA 1E T 23 5
AT /AAFB/, FSE A% 1 Wi 2 rT R HE LIBE S e 2K () 3840 — AR R 5 A AR A D e Js — 4R A
H, BOREH AR, WA REIE, T RECRRFUR I IE R IA A o o SR 4 Ok 1E)2
5 3K BUB/((2=(A+AH))\2)+B/, FANEIHBR T[R9)

A Note on Benchmarking 3R #E i B5

Because a regex's performance can be wildly different depending on the text it's applied to, there's no
straightforward way to benchmark regexes against each other. For the best result, you need to benchmark your

regexes on test strings of varying lengths that match, don't match, and nearly match.

DR Ay TE DU 30 AP F DAL SCAR AN [l i AR AR K 22 57, B0 a7 BB 17 (750 AT LIt e 2R3 3] 1Y
PEREZEIN o AT BNERAF VAR, AR ZEAE SR 47 _LINAURAIE N L5, ORI, e ULien,
ANBEVLACH, AT AAIEHCH .

That's one reason for this chapter's lengthy backtracking coverage. Without a firm understanding of
backtracking, you won't be able to anticipate and identify backtracking-related problems. To help you catch
runaway backtracking early, always test your regexes with long strings that contain partial matches. Think about

the kinds of strings that your regexes will nearly but not quite match, and include those in your tests.

XA AT AT KR R A S5 R 22— o T RS D) BEAR [P0, R IR 5 (R AH 5 e L. D 46
B R HACHR I A%, SO A SR AR UL I A A5 3 R (0 LE U RAE S BT R IR 1 IR0k 3R S8
LT MEARBESE VLA P AT, R AR N AR B A

More Ways to Improve Regular Expression Efficiency 32 iE WEE RN E T L ik

The following are a variety of additional regex efficiency techniques. Several of the points here have already

been touched upon during the backtracking discussion.

g H IR EIE IR AR R IR R B LR e T

Focus on failing faster

FVE AR LE VL HC AR 2RI

Slow regex processing is usually caused by slow failure rather than slow matching. This is compounded by the
fact that if you're using a regex to match small parts of a large string, the regex will fail at many more positions
than it will succeed. A change that makes a regex match faster but fail slower (e.g., by increasing the number of

backtracking steps needed to try all regex permutations) is usually a losing trade.

TE N ZEIE AL BRASAE A K D0 DU RC R Rt 1 AS VU BC DI RENg o SR A TE R AL i —
MR FRFH I —/NEB 2y, DL i, IR RRA VLR R AL B L VL RC I A B 2 A5 2 . Wik
MBS IR WA UL SE PR AE RIS NS (9, S 19 0 B s (0 [25 2l B A 20 SC I HES I AL

B, R NMRM B

Start regexes with simple, required tokens

IENAE QLA Y, A7 1 70T a6

Ideally, the leading token in a regex should be fast to test and rule out as many obviously nonmatching
positions as possible. Good starting tokens for this purpose are anchors (™ or $), specific characters (e.g., X or
\u263A\), character classes (e.g., [a-z] or shorthands like \d), and word boundaries (\b). If possible, avoid starting
regexes with groupings or optional tokens, and avoid top-level alternation such as /one[two/ since that forces the
regex to consider multiple leading tokens. Firefox is sensitive to the use of any quantifier on leading tokens, and is

better able to optimize, e.g., \s\s* than \s+ or \s{1,}. Other browsers mostly optimize away such differences.

IREARO G DU, — N IEMIE SRR G 7 oo 24 R] REtRd s il il F HeR W B A VLR AL B . T2k
HIRae e dn wocll i e M (Cel$) , FRE P (Bl x Bw363A) , PP (B, [a-z]Bdic#F
flamd) , MURIEASE (b) o WIARFTREMIE, S DA 4 sk 7 ook, @S g oy S Bl foneltwo/ »

PRk e it 1 ik QR 22 Rl 4R 7 7T - Firefox X A2 45 70 A I AT Sl AR URK, me g DAL i 38
U, hn, DI\ AR\ +ENs {1,} o oA W38 K2 A0 X L 72 5

Make quantified patterns and their following token mutually exclusive

O 5 AR, AE e TR T 7 OC AR R

When the characters that adjacent tokens or subexpressions are able to match overlap, the number of ways a
regex will try to divide text between them increases. To help avoid this, make your patterns as specific as possible.

Don't use ".*?" (which relies on backtracking) when you really mean "["\r\n]*".

MPRT P IUME AR sl T RIA R A ILEC, — AN IENRRIE S i SCAS (1 A2 B f 18 0 . kgt
IR, REEARARIEAR . ORI A\ * I AN A %2 CHOBRTD

Reduce the amount and reach of alternation

5y SCHIBUCR, A /N e AT T

Alternation using the | vertical bar may require that all alternation options be tested at every position in a
string. You can often reduce the need for alternation by using character classes and optional components, or by
pushing the alternation further back into the regex (allowing some match attempts to fail before reaching the

alternation). The following table shows examples of these techniques.

OPSUAER |, Mgk, TREEORAE AT IR R AL E BN ETA 1> SCR I, AR H Al R A AT
FREIRAL IR R 73 SO RT R, 8Os 70 SCAE IR IR S B Ar BHEIS SCVRRIIA) SCZ i — LEDL g 2%
RN o PRI IXEERARI BT

Instead of Use
cat|bat [ch]at
red|read reald
red|raw r(?:ed|aw)

(-[\r[\n) [\s\S]

Character classes are faster than alternation because they are implemented using bit vectors (or other fast

implementations) rather than backtracking. When alternation is necessary, put frequently occurring alternatives

first if this doesn't affect what the regex matches. Alternation options are attempted from left to right, so the more

frequently an option is expected to match, the sooner you want it to be considered.

TP SCE PR, AT L AL g S S (AR PR S0 i AN [T 2493 SCIAANRT DI, Rt
W SORAE S BT, A REXFEABAS R IE AR SRUL R A ih o 2 SCETRM e A MR 2k, — DIk T
VERC ERIPL A, e Aaril (e 5 s o

Note that Chrome and Firefox perform some of these optimizations automatically, and are therefore less

affected by techniques for hand-tuning alternation.

7ER Chrome Al Firefox HAIHATX LA R LeTii H , P b/ 22 21 F L B2,

Use noncapturing groups

AR SR

Capturing groups spend time and memory remembering backreferences and keeping them up to date. If you
don't need a backreference, avoid this overhead by using a noncapturing group—i.e., (?:...) instead of (...). Some
people like to wrap their regexes in a capturing group when they need a backreference to the entire match. This is
unnecessary since you can reference full matches via, e.g., element zero in arrays returned by regex.exec() or $&

in replacement strings.

FARAAE SN A A AF e | g T, JFORFEA R R . WERIRANER Z— a5,
A4 AR SR Al S X PR —— n, (2)R LD o B AT R AN e A VLR S] 5 LI,
ENCRAATT A IE IR SR Ml SR AL . IR AR, RO IR BE IS i FAl 5951 I 58 4x VL,
Blhn, AEH] regex.execQIRIFIELALMS NI, BOFHCFAT R HINS&.

Replacing capturing groups with their noncapturing kin has minimal impact in Firefox, but can make a big

difference in other browsers when dealing with long strings.

FHAR SR B IRA1AE Firefox FRsgmiafR /Iy, (EAEFAD) b 2% AR PR P45 H IR SE MR K

Capture interesting text to reduce postprocessing

FHARBOGHR ST, ol e b P

As a caveat to the last tip, if you need to reference parts of a match, then, by all means, capture those parts and
use the backreferences produced. For example, if you're writing code to process the contents of quoted strings
matched by a regex, use /*'([*"*]*)""/ and work with backreference one, rather than using /*'[*"*]**'/ and manually
stripping the quote marks from the result. When used in a loop, this kind of work reduction can save significant

time.

oA R T U — 5, BT V)RR BB FE, FEA I 5 A
B A, A AR E R SR IE RS 5 o I o A, MR) AR —
RS, AR TP 8T N e TR0 5 o SR ARER P LI DIy T AR T
AT).

Expose required tokens

In order to help regex engines make smart decisions about how to optimize a search routine, try to make it easy
to determine which tokens are required. When tokens are used within subexpressions or alternation, it's harder for
regex engines to determine whether they are required, and some won't make the effort to do so. For instance, the
regex /”(ablcd)/ exposes its start-of-string anchor. IE and Chrome see this and prevent the regex from trying to

find matches after the start of a string, thereby making this search near instantaneous regardless of string length.

However, because the equivalent regex /("ab]”cd)/ doesn't expose its * anchor, IE doesn't apply the same

optimization and ends up pointlessly searching for matches at every position in the string.

O 75 By TE 32 5 | A G e (1A 2 T) A5 P A8 b PR PR e, S e P e) BB IR 28 a0 75 117 TG
7o HE TRIE B 308, IEMRGA G AR WA A DR AGZ LT, A7 L5 I AE L5 T
55010 i, IENIZRIE S/ (abled)/ 25 B I 7 4F L 44T TE A Chrome 2 RIEIX—5d, JFRLIEIENIE
RSB R Sk 2 5 AOUL L, AT 2 4R I) S M ANVE 74T ER A . (HUR, i AR IE IR
/(rablred)/ A FRFEE I, TE BIEN I FERERIDUAL, 0RO R 74 R IR AERE— M EILRC.

Use appropriate quantifiers

AP 3 =4 1) 1]

As described in the earlier section “Repetition and backtracking” on page 90, greedy and lazy quantifiers go
about finding matches differently, even when they match the same strings. Using the more appropriate quantifier
type (based on the anticipated amount of backtracking) in cases where they are equally correct can significantly

improve performance, especially with long strings.

AT 1 (A Prishieid rIsFe, o 1 Mg 1 R UL RS RIAE 0 74, LA R IL AT
AR REAFN . R R IERAE RIS T, A EAIE R RIS CGE AR R ED W LLE 1R

rlERe, JCIAEAL B AT R I

Lazy quantifiers are particularly slow in Opera 9.x and earlier, but Opera 10 removes this weakness.

B FE 1A /E Opera 9.x AT FUARCA_EA% AN, {H Opera 10 VHFR 731X 55 .

Reuse regexes by assigning them to variables

R IENRGE g A, AT EAT

Assigning regexes to variables lets you avoid repeatedly compiling them. Some people go overboard, using
regex caching schemes that aim to avoid ever compiling a given pattern and flag combination more than once.
Don't bother; regex compilation is fast, and such schemes likely add more overhead than they evade. The

important thing is to avoid repeatedly recompiling regexes within loops. In other words, don't do this:

R R Ik A 2 AR 5 DURE S AT TE BT g 16 o A AL K, AT IE WA IE SO A7, LA S x4
SE MBAR MR IC AL A HEAT 2 R G 1% . ANEGE M VORE, IEWRGA G BRARPR, IXRE RS2 A7 Ity 18 0 (1 S 45 mT
REAR L A AT IE SR o T S AR R S AR A A P B S G R IR AR IA e)T i, AN XA

while (/regex1/.test(strl)) {

/regex2/.exec(str2);

Do this instead:

BARLLR

var regex| = /regex1/,
regex2 = /regex2/;
while (regex1.test(strl)) {

regex2.exec(str2);

Split complex regexes into simpler pieces

R S22 1A LE AR S Hw 20 DA 7 R 11 A

Try to avoid doing too much with a single regex. Complicated search problems that require conditional logic
are easier to solve and usually more efficient when broken into two or more regexes, with each regex searching
within the matches of the last. Regex monstrosities that do everything in one pattern are difficult to maintain, and

are prone to backtracking-related problems.

SR AN IENRGE AOR 2 (0 T A . SR AR R U 2R A, IR0 AP B AN IE NG
SRl vk, WAL, SR IENERIE AR s VLA R P AT B4R 78— DR S8 T I
PERIE N RE AP AR ELEY™, 1My FLZ 5 5 RS [R1IAR 5 (1 [el

When Not to Use Regular Expressions 14 B &4 B 248 A IE) R A =

When used with care, regexes are very fast. However, they're usually overkill when you are merely searching
for literal strings. This is especially true if you know in advance which part of a string you want to test. For

instance, if you want to check whether a string ends with a semicolon, you could use something like this:

MO, IEMEIEAGEARH IR R, AR R R ST AT R I e AT AL . AR
FOCRIE 75455 8 10— B0 R ZEEAI o B, WK &P AR AZ LA S AT, ARAT L
il -

endsWithSemicolon = /;$/.test(str);

You might be surprised to learn, though, that none of the big browsers are currently smart enough to realize in
advance that this regex can match only at the end of the string. What they end up doing is stepping through the
entire string. Each time a semicolon is found, the regex advances to the next token ($), which checks whether the
match is at the end of the string. If not, the regex continues searching for a match until it finally makes its way

through the entire string. The longer your string (and the more semicolons it contains), the longer this takes.

PROTRE AN AT BE, B U0 M 1A MRS D B s I XA, RERS ROR B AN IE A AU REDL 7
FFERIAR R . BN R A MRS T8RS SRR BLT AT, NI ST

BRI AFIC (8, MAERGILRE TS RIARR. WRAZXFETE, ENRIE ARS8 R ILAC,
FLR TR TR TR KD (RS) 8 AR T

In this case, a better approach is to skip all the intermediate steps required by a regex and simply check

whether the last character is a semicolon:
XAEDL R A INE R B 1 WIZB T 5 BT A (D 3R, (] S b fn — A P AT R AN 5
endsWithSemicolon = str.charAt(str.length - 1) ==";";

This is just a bit faster than the regex-based test with small target strings, but, more importantly, the string's

length no longer affects the time needed to perform the test.

HbR 747 B AR/, IR R R B E W ZRB AU — o, HE RS, A5 A B AN 5 M P T3
Pt B IR 18] o

This example used the charAt method to read the character at a specific position. The string methods slice,
substr, and substring work well when you want to extract and check the value of more than one character at a
specific position. Additionally, the indexOf and lastindexOf methods are great for finding the position of literal
strings or checking for their presence. All of these string methods are fast and can help you avoid invoking the

overhead of regular expressions when searching for literal strings that don't rely on fancy regex features.

XA AL charAt BRECERF 2 AL A BT AT AT R AL slice, substr, A1 substring]] J-7E4F
PE FRRIOFR A AR IOME. 14h, indexOff F lastindexOf #R A4 3& & 2 45 8 T AT IO B, B
AR EN RS AL P I EE AT ER AR s O AR R, A R O LA E W RAA SR 28 e (13
AP, AT B G 1E Tk s R I PR RETT 4 o

String Trimming F&FHB&8]

Removing leading and trailing whitespace from a string is a simple but common task. Although ECMAScript
5 adds a native string trim method (and you should therefore start to see this method in upcoming browsers),
JavaScript has not historically included it. For the current browser crop, it's still necessary to implement a trim

method yourself or rely on a library that includes it.

LR AT RIS RIS — AN S LRSS . AR ECMAScript 5 ¥ I T J A AP s B B i £ (R
Ji% T EAAERIDRE BL 30 S s A 21e DD 2IH AT LE JavaScript R A WSS X A e m S,
AL A OB ME BT pE, B KEE A T RER P

Trimming strings is not a common performance bottleneck, but it serves as a decent case study for regex

optimization since there are a variety of ways to implement it.
BB B A GE A WRIPEREIAT, (B4 2 21 IENIZE AL B 5 2 RSl E
Trimming with Regular Expressions i 1E &A1& 8]

Regular expressions allow you to implement a trim method with very little code, which is important for
JavaScript libraries that focus on file size. Probably the best all-around solution is to use two substitutions—one to
remove leading whitespace and another to remove trailing whitespace. This keeps things simple and fast,

especially with long strings.

IENZGE S ICVFIR AR > (AR SEBL—AME BT R, 3XX JavaScript S0 TR/ KRB+ B2
A BE SR A A IR T SR I A T RIE A — D TLERELI S, 50— D TLBRRE A% . XA
Ak PR AT IGE, R A B AT I

if (IString.prototype.trim) {
String.prototype.trim = function() {
return this.replace(/"\s+/, "").replace(/\s+$/, "");
H
H
// test the new method...
// tab (\t) and line feed (\n) characters are
// included in the leading whitespace.
var str =" \t\n test string ".trim();

alert(str == "test string"); // alerts "true"

The if block surrounding this code avoids overriding the trim method if it already exists, since native methods
are optimized and usually far faster than anything you can implement yourself using a JavaScript function.
Subsequent implementations of this example assume that this conditional is in place, though it is not written out

each time.

if T AUt G 7 o trim RRECIRE C A7 AE, DU U E B EGEAT T84, 8% iz R Tk Al JavaScript H
CERRE. Jamre RS e AW 7, A RERAS L.

You can give Firefox a performance boost of roughly 35% (less or more depending on the target string's
length and content) by replacing N\s+$/ (the second regex) with /\s\s*$/. Although these two regexes are
functionally identical, Firefox provides additional optimization for regexes that start with a nonquantified token.
In other browsers, the difference is less significant or is optimized differently altogether. However, changing the
regex that matches at the beginning of strings to /\s\s*/ does not produce a measurable difference, because the
leading ™ anchor takes care of quickly invalidating nonmatching positions (precluding a slight performance

difference from compounding over thousands of match attempts within a long string).

RAT LAY Firefox — K21 35%MIPERESETT (B2 BT H AR 74T FR IR EEAT A 73 TR As+$/
CHAIENZRIED B HlNs\s*$/o BIRX A IENRIE W DI fe ¢ AR, Firefox A1 A8LL LR fia]
TR ENZRGE R PASN Lt . ARSI A B, ZRARE, sf e aAnm. R, 522
IR, A2 705 3 TS UL G/ Ms\s /AN 27 A W] A 7 S, DAL DA~V it 2 R BUAIR L8 pREATE 2 (1 A DL BT 7 ¥ (il
o AMNREBITEREZE S, OVAE DR S Rl e A BRI 20 .

Following are several more regex-based trim implementations, which are some of the more common
alternatives you might encounter. You can see cross-browser performance numbers for all trim implementations
described here in Table 5-2 at the end of this section. There are, in fact, many ways beyond those listed here that
you can write a regular expression to help you trim strings, but they are invariably slower (or at least less

consistently decent cross-browser) than using two simple substitutions when working with long strings.

PAUR 2 LA T IEMIRGE B BT S, R Uk ml RE 2 1 B LA IR o AR AEAS TR B3R
52 A FNX RS trim SEEIAEA R A EPERE. FS b, BRIXEAIM M ZANEAEZ T, IRA]
DU —MEMERIEARE BT 745 8, (HENIFEAARR AT I, S P fR RA A e (R /D1EES
DB AN a2k .

// trim 2
String.prototype.trim = function() {

return this.replace(/M\s+\s+$/g, "");

-~

This is probably the most common solution. It combines the two simple regexes via alternation, and uses the /g
(global) flag to replace all matches rather than just the first (it will match twice when its target contains both
leading and trailing whitespace). This isn't a terrible approach, but it's slower than using two simple substitutions

when working with long strings since the two alternation options need to be tested at every character position.

X AT e Bl W R T 5. Bl Y SCIIREE I T AR R IE AR IR, R g ()R ARid s
BPTATVLHC, ARG A CHEARTARF R A SR SR ILEC PO o IXTFAGE Sl 5k,
(ISP S R (N I = L S L R O AW o PN /S e v B L -3 U 7 W e e R VA 8

// trim 3
String.prototype.trim = function() {

return this.replace(/N\s*([\s\S]*?)\s*$/, "$1");

—

This regex works by matching the entire string and capturing the sequence from the first to the last
nonwhitespace characters (if any) to backreference one. By replacing the entire string with backreference one,

you're left with a trimmed version of the string.

XA ENZRE A AR S B S DU RCHEA 74T 85, TR — A B Ja — R TR Z B P41, B A
JET G 1o SRIRAERE SR 1R P R B b T 3745 5 B BT IRCA

This approach is conceptually simple, but the lazy quantifier inside the capturing group makes the regex do a
lot of extra work (i.e., backtracking), and therefore tends to make this option slow with long target strings. After
the regex enters the capturing group, the [\s\S] class's lazy *? quantifier requires that it be repeated as few times as
possible. Thus, the regex matches one character at a time, stopping after each character to try to match the

remaining \s*$ pattern. If that fails because nonwhitespace characters remain somewhere after the current position

in the string, the regex matches one more character, updates the backreference, and then tries the remainder of the

pattern again.

SRANTT MR T 5, EA SR ML P S) Ao 1 A SR AT TR 2 BUMRAE (i, B, ke
BAE K H AR AT B IR o BEA IE MR IA USRI, [\s\STI ARt f i * 2 2R AT REM g/ B2 ICKL
I, XA ERRGEAREVLAC A7 4F, A N R AL A R A\s*SER . WA A5 ds Az B2)5
FAEARZE M AT BRI, IENERE A VLR — s A4, BB A RS, AR5 PR AR 1

RIRARIY o

Lazy repetition is particularly slow in Opera 9.x and earlier. Consequently, trimming long strings with this
method in Opera 9.64 performs about 10 to 100 times slower than in the other big browsers. Opera 10 fixes this

longstanding weakness, bringing this method's performance in line with other browsers.

7E Opera 9.x FIHH FLRRAR R i B2 K518 . PRI, XA 75AE Opera 9.64 | EEH g KR N 4802 T 10
F] 100 f%. Opera 10 fZ1E T IX/MNMKHIAALEI 59 55, R 7k Bk Re 4 a2 e i W2 AH 2 7K.

// trim 4
String.prototype.trim = function() {

return this.replace(/"\s*([\s\S]*\S)?\s*$/, "$1");

This is similar to the last regex, but it replaces the lazy quantifier with a greedy one for performance reasons.
To make sure that the capturing group still only matches up to the last nonwhitespace character, a trailing \S is
required. However, since the regex must be able to match whitespace-only strings, the entire capturing group is

made optional by adding a trailing question mark quantifier.

RAKIENAE B MR G, BT PR BN DL ot 8 S U T i R i DRk R UL B e m
AR TAE, it RRRE NS SR, T IR WRRIE Sl T RES VL HC A0 p AR A B 74 £R BNl
SRS B A2 5T ok AR

Here, the greedy asterisk in [\s\S]* repeats its any-character pattern to the end of the string. The regex then
backtracks one character at a time until it's able to match the following \S, or until it backtracks to the first

character matched within the group (after which it skips the group).

FERE, [\S\ST*HH (R B AE i ia] <+ R R L 5455 A AR T AT 2 P AT R A SR IEARIE AR
[FI— A7, EEIE RERE ULAC S NS, 8 BRI R 202 — > 4F VL Ao BN (R R ek X A4 .

Unless there's more trailing whitespace than other text, this generally ends up being faster than the previous
solution that used a lazy quantifier. In fact, it's so much faster that in [E, Safari, Chrome, and Opera 10, it even
beats using two substitutions. That's because those browsers contain special optimization for greedy repetition of
character classes that match any character. The regex engine jumps to the end of the string without evaluating
intermediate characters (although backtracking positions must still be recorded), and then backtracks as
appropriate. Unfortunately, this method is considerably slower in Firefox and Opera 9, so at least for now, using

two substitutions still holds up better cross-browser.

AR RS AN AP R 2, I AT OIS A T R S T R . s b, EAEIE,
Safari, Chrome ! Opear 10 Fuiptz ff, $L2 8 AN 7 FRE X7 R R IXEE 3] W as 0 S R
e, LTRSS T 0 P APRILRCAE B T A ST A A R o IR USRI S5 | 5 ER Bk 2 3 75 sh R R i AR &
R ORI L T OE R, SREIE M M. A, X7 AE Firefox F Opera 9 _EAEH
18, BrCARIH Ak, AP 7 RIE ATH AR AL T4 A0 B2 g 56

/[trim 5
String.prototype.trim = function() {

return this.replace(/N\s*(\S*(\sH\S+)*)\s*$/, "$1");

This is a relatively common approach, but there's no good reason to use it since it's consistently one of the
slowest of the options shown here, in all browsers. It's similar to the last two regexes in that it matches the entire
string and replaces it with the part you want to keep, but because the inner group matches only one word at a time,
there are a lot of discrete steps the regex must take. The performance hit may be unnoticeable when trimming

short strings, but with long strings that contain many words, this regex can become a performance problem.

R A M 1) 7k EBAT R BL e, DDA EAEPAT B s AR X A Ay g i
RIH— A e m A IENZGES, e VL ECREAS T4 5 2R e PRI S OR B 0 0 0 B A 74+ o
DA N LA R DL S — A Fda], R R S 5 AT K K B BCD B o 8 BT 715 B I PR RE b o O F AN
B, HAAEAS MR AT R I, XA EMRIE ST RSO — AN RE 1)

Changing the inner group to a noncapturing group—i.e., changing (\s+\S+) to (?:\s+\S+)—helps a bit, slashing
roughly 20%—45% off the time needed in Opera, IE, and Chrome, along with much slighter improvements in
Safari and Firefox. Still, a noncapturing group can't redeem this implementation. Note that the outer group cannot

be converted to a noncapturing group since it is referenced in the replacement string.

BB SO — AN ER IR B, K OsHSHIEMR (2\sA\S+) ——fF— i F 8, 7F Opera, IE
1 Chrome 40 7 KZ 20%-45% K A BRIS (], 7F Safari 1 Firefox A48 Mckss .)& wntk, — 66
IRAANRE 52 ARIIXA LI o T, AMEBAA RO AR AL, R e W e i) 775 Rl 5 T .

Trimming Without Regular Expressions A F 1IF M Zix &80

Although regular expressions are fast, it's worth considering the performance of trimming without their help.

Here's one way to do so:

BARIENFRE AR, @R EAH SR A I BB 777 B ITERE . A — FlOEIZAEAL:

// trim 6
String.prototype.trim = function() {
var start = 0,
end = this.length - 1,
ws =" \n\r\t\f\x0b\xa0\u1680\u180e\u2000\u2001\u2002\u2003
\u2004\u2005\u2006\u2007\u2008\u2009\u200a\u200b\u2028\u2029\u202f
\u205f\u3000\ufeft™;
while (ws.indexOf{(this.charAt(start)) > -1) {
start++;

H
while (end > start && ws.indexOf(this.charAt(end)) > -1) {

end--;
}

return this.slice(start, end + 1);

-~

The ws variable in this code includes all whitespace characters as defined by ECMAScript 5. For efficiency

reasons, copying any part of the string is avoided until the trimmed version's start and end positions are known.

PEACHE A 1 ws AR 6 ECMAScript 5 7 SCRIPTA 2 745 T R0R R, AEAS 2B BT X R 46 A

LA B TR s DU S AR AT FR) o

It turns out that this smokes the regex competition when there is only a bit of whitespace on the ends of the
string. The reason is that although regular expressions are well suited for removing whitespace from the beginning
of a string, they're not as fast at trimming from the end of long strings. As noted in the section “When Not to Use
Regular Expressions” on page 99, a regex cannot jump to the end of a string without considering characters along
the way. However, this implementation does just that, with the second while loop working backward from the end

of the string until it finds a nonwhitespace character.

AT R RTINS, R DU R W FGA A APIE TAE . SR, RV IENIZRGA SR A3t
LR T PRSI, ENTEARE R FE PR B BT P AT R RIS IR I (A AR Z A8 AT =
FRAEAD) PR BIIRE, AN IENERE A BB 2 755 8 R R I AN [e 715 AR, ASEILIE
FERE, AEE A while P WP AF R R 1A AT A Ak — R AT

Although this version is not affected by the overall length of the string, it has its own weakness: long leading
and trailing whitespace. That's because looping over characters to check whether they are whitespace can't match

the efficiency of a regex's optimized search code.

BRI P B KEEm, HEAHCKSEA: CEFND KIESKRZERK . RUOVEA G &7
FEAEEARAERCR EAUNE IR AP A A i = A

A Hybrid Solution JB&RYTT &

The final approach for this section is to combine a regex's universal efficiency at trimming leading whitespace

with the nonregex method's speed at trimming trailing characters.

AN IR G AN MR A g Ak, HIENZGE BB Sk, MR ENZRGE AT VA B8 R iy

o

// trim 7
String.prototype.trim = function() {
var str = this.replace(/\s+/, ""),
end = str.length - 1,
ws = /\s/;
while (ws.test(str.charAt(end))) {
end--;

}

return str.slice(0, end + 1);

This hybrid method remains insanely fast when trimming only a bit of whitespace, and removes the
performance risk of strings with long leading whitespace and whitespaceonly strings (although it maintains the
weakness for strings with long trailing whitespace). Note that this solution uses a regex in the loop to check
whether characters at the end of the string are whitespace. Although using a regex for this adds a bit of
performance overhead, it lets you defer the list of whitespace characters to the browser for the sake of brevity and

compatibility.

JUBBT A28, IRETAERELL, JFEER THERE LIRS, BB IFL I PR 4, 58

IR AT OV EAE R SR I AT SR AR AT 5 1) o THRERD B S AERIA
A H TE WA A 54 £ RS (0 AT 2 A5 5%, R IE WA N 17— MR RE S A, (HE SRR
AR P S R SO FAF IR, DLORFF TR AR AL

The general trend for all trim methods described here is that overall string length has more impact than the
number of characters to be trimmed in regex-based solutions, whereas nonregex solutions that work backward

from the end of the string are unaffected by overall string length but more significantly affected by the amount of

whitespace to trim. The simplicity of using two regex substitutions provides consistently respectable performance
cross-browser with varying string contents and lengths, and therefore it's arguably the best all-around solution.
The hybrid solution is exceptionally fast with long strings at the cost of slightly longer code and a weakness in

some browsers for long, trailing whitespace. See Table 5-2 for all the gory details.

PFATIE BT 5 ik e st 3L FIENRGAN T s, 74F B K ELB B 3 10 745 JO SR i R g s
AR IE MR AT M TAF AR RS A AR, AP 8 B HIEN, (H 552 22 BT A 1% H (150 .
] PP A8 Y P A TR UK AR P D s L AR BEAN[R) 3 BRI BE) 74 H I, R I R I RE
Ve AT LA R B A T AR T 6 o RS R RACAL B AR B IR R, AR AR RS G, ESELE3)
Yo ae EACELR A AR INAF RS 5l K 5-2 2P IRl 1.

Table 5-2. Cross-browser performance of various trim implementations

R 5-2 AN trim FRCASTE SFP o] b 2y P g

Browser Time (ms)®

Tim1® Tim2 Trim3 Trim 4 Trim 5¢ Trim 6 Trim 7
IE7 80/80 N&2 547/539 36/42 218/224 1411015 18/409
IES 7070 BYI56 512/425 26/30 216/222 41334 14205
Firefox 3 1361147 164174 650/600 1098/1525 141671488 211157 20144
Firefox3.5 130147 157/172 500/510 100411437 1344013%4 214332 18/50

Safarid.d 253/253 424/425 3517359 27129 541/554 2140 5/80
Safari4 37137 333 69/68 32/33 510/514 <0529 418
Opera9.64 494517 731/748 9066/9601 901/955 195372016 <0.5/210 20/241
Opera 10 75(75 941100 360/370 46/46 514/514 /186 121198

Chrome 2 78/78 66/68 100/101 59/59 140/142 1137 24/55

a Reported times were generated by trimming a large string (40 KB) 100 times, first with 10 and then 1,000

spaces added to each end.

WS WA RAS BT — /N KPR (40KB) 100 KT IITR], FEASFRFELL 10 NIk, L 1'000 4%

a R

b Tested without the \s\s*$/ optimization.

R 5 A As\s* $/40 4L

¢ Tested without the noncapturing group optimization.
T 5% AR SR AL AL
Summary &4

Intensive string operations and incautiously crafted regexes can be major performance obstructions, but the

advice in this chapter helps you avoid common pitfalls.

AR TR R R A RUR A M 20 5 1 IR AT e M RERAG, (H A v (S 8O mT 5 B Fa e £ DL

Ko

* When concatenating numerous or large strings, array joining is the only method with reasonable performance in

IE7 and earlier.
MIEEAEE RS BRI AR, ABcE & IB7 A oA L — BAG & BYERE M vk

* If you don't need to worry about IE7 and earlier, array joining is one of the slowest ways to concatenate strings.

Use simple + and += operators instead, and avoid unnecessary intermediate strings.

BERARAN I TET FVE L IIRAS , B B R 18 74T i e MR R T ik — o (T) B AR+ A= M AR
A G AN B] AT

* Backtracking is both a fundamental component of regex matching and a frequent source of regex inefficiency.
PTG 2 1 M 8 A DL C D e BEAS O AL e 2 2 A I A e S8 3 1 o L S A

* Runaway backtracking can cause a regex that usually finds matches quickly to run slowly or even crash your
browser when applied to partially matching strings. Techniques for avoiding this problem include making
adjacent tokens mutually exclusive, avoiding nested quantifiers that allow matching the same part of a string more

than one way, and eliminating needless backtracking by repurposing the atomic nature of lookahead.

[P 42 e A A TR W RGE A BAR PR A DLV By, D RE LR IR I DL G 74 R, e EUatr e
FEA P AR o T S R BOR S AR O, SRR R A AT S AR RS 2 2 IR
VCRC, 3 552 A BE SR (0 R Ik 25 R AN A 1 R3]

* A variety of techniques exist for improving regex efficiency by helping regexes find matches faster and spend
less time considering nonmatching positions (see “More Ways to Improve Regular Expression Efficiency” on

page 96).

PR IENZIE R AP EOR T B, B IE NI S Rt gk BIDLAC, ASAEAR VLA B A9 /D
e O CBE 2 48 IR WZGE AR I ED) D o

* Regexes are not always the best tool for the job, especially when you are merely searching for literal strings.
IENEIE ATEA RGE S CAE R Bt T, U AR R R — NSO R H I .

* Although there are many ways to trim a string, using two simple regexes (one to remove leading whitespace and
another for trailing whitespace) offers a good mix of brevity and cross-browser efficiency with varying string
contents and lengths. Looping from the end of the string in search of the first nonwhitespace characters, or
combining this technique with regexes in a hybrid approach, offers a good alternative that is less affected by

overall string length.

BRAMRZINERBE DTS, AR ENRIES TR, 5T
LRI St T —AuE . BRSO, S AN AR PR # . TR EITA
PRI AR DA, B NREG NI ER S IEMEA g Gk, et 7 MRUFK
BT %, EIRD S 24T B AR SE 50

FH7NE Responsive Interfaces MWz M

There's nothing more frustrating than clicking something on a web page and having nothing happen. This
problem goes back to the origin of transactional web applications and resulted in the now-ubiquitous "please click

only once" message that accompanies most form submissions. A user's natural inclination is to repeat any action

that doesn't result in an obvious change, and so ensuring responsiveness in web applications is an important

performance concern.

BT A2 P o DU L R ZR P A A B B0 A B A NI BT T o XA i JE L0 3 1 Ji s B AT LR Y
ABLAE CICAEAE A SR AR S 5 1 1T 20 BERARACH R Bl e ™ AR MR 1 2 SliX 2 A A W
WARAREIBIAE, BT LA DR W9 0 R P FR) i St it A S B R PR BE R A

Chapter 1 introduced the browser UI thread concept. As a recap, most browsers have a single process that is
shared between JavaScript execution and user interface updates. Only one of these operations can be performed at
a time, meaning that the user interface cannot respond to input while JavaScript code is executed and vice versa.
The user interface effectively becomes "locked" when JavaScript is executing; managing how long your

JavaScript takes to execute is important to the perceived performance of a web application.

N T A UT 2Rt . SR, KRB HR AT SRR A BRI M5
L2 JavaScript A£55H1)7 S SOBTAE 55 o BRI Z0 KA HErP i NMRAEAF LAAAT, At 1 2 JavaScript
ARSI A T IR S AN BEXS AN B S, e Z MR e BB B, 24 JavaScript IS AT, I St sliale Be”
T EELLF JavaScript IE AT I S W9 TR PR BEAR FEE .

The Browser Ul Thread #1858 Ul 472

The process shared by JavaScript and user interface updates is frequently referred to as the browser Ul thread
(though the term "thread" is not necessarily accurate for all browsers). The Ul thread works on a simple queuing
system where tasks are kept until the process is idle. Once idle, the next task in the queue is retrieved and
executed. These tasks are either JavaScript code to execute or Ul updates to perform, which include redraws and
reflows (discussed in Chapter 3). Perhaps the most interesting part of this process is that each input may result in

one or more tasks being added to the queue.

JavaScript A1 UT 573 52 (U0 R0 AOpR A1 30 W% UT 2R CHURRT T A I S R i e fie— i A — 8
HERfD o UL UL EREfSeE DM PRI RS TAE, RS PR R B RSN — B2, B
FIFHI R MES KRR RANEAT . XRS5 AIRIZAT JavaScript AU, w2 AT UL S0, Q5 B Ak
R (E =) o seRERE e NG R R AT S B A sl MES BB

Consider a simple interface where a button click results in a message being displayed on the screen:

HRERFE AR O 4N ML REBERE RN R

<html>
<head>
<title>Browser Ul Thread Example</title>
</head>
<body>
<button onclick="handleClick()">Click Me</button>
<script type="text/javascript">
function handleClick(){
var div = document.createElement("div");
div.innerHTML = "Clicked!";
document.body.appendChild(div);
}
</script>
</body>

</html>

When the button in this example is clicked, it triggers the Ul thread to create and add two tasks to the queue.
The first task is a Ul update for the button, which needs to change appearance to indicate it was clicked, and the
second is a JavaScript execution task containing the code for handleClick(), so that the only code being executed
is this method and anything it calls. Assuming the UI thread is idle, the first task is retrieved and executed to
update the button's appearance, and then the JavaScript task is retrieved and executed. During the course of
execution, handleClick() creates a new <div> element and appends it to the <body> element, effectively making
another UI change. That means that during the JavaScript execution, a new Ul update task is added to the queue

such that the UI is updated once JavaScript execution is complete. See Figure 6-1.

07 A FE L R I B il UT ZeRE G PTAME ST IR I R BB o 55— M S5 AL LI UT B3
Bt LB RN ERAZ T, 5 T AMESS I JavaScript 1247155, U E handleClick() AR5,

AT A ME— ARl XA AP e 5% BB UL RS, 5 ME S5 i &) Fas 47 LA
WAL AN, SRJ5 JavaScript (£S5 BANEAT . 1247 H, handleClick() B 17— M <div>Io 5,
FBnfE<body>7eE L, HACRZGI A — IR UL & . W2 Uift JavaScript i ATRd R, —MEif Ul
SRS INAEBR A, 24 JavaScript 1847582 J5, UG EH—K. W& 6-1.

Ul Thread

Ul Queue
User clicks

e B

|J'I'l"i'i"l'l"l'l"l'l*
l.‘_.

Time

Figure 6-1. UI thread tasks get added as the user interacts with a page

K o6-1)75 Ui AC G i) UT 268 n— 44555

When all UI thread tasks have been executed, the process becomes idle and waits for more tasks to be added
to the queue. The idle state is ideal because all user actions then result in an immediate UTI update. If the user tries
to interact with the page while a task is being executed, not only will there not be an immediate UI update, but a
new task for a UI update may not even be created and queued. In fact, most browsers stop queuing tasks for the Ul
thread while JavaScript is executing, which means that it is imperative to finish JavaScript tasks as quickly as

possible so as not to adversely affect the user's experience.

P UL RS PTG, SEREBE NS HEIRZS, JFEEAE 2 ARSI BB o SRR S BEAR
(K1, D B F P 48R S 20 51 5k UL 38 W R A A B AEAR 553 A TIN5 DO A L, ANLAAT BTN 1)
UL 5007, M0 HANSATHT) UL SR S5 B QAN BA S o S b, K2 Bl WE #34E JavaScript 1247 I 45
1k UL ERRERAS R AR S5, it il JavaScript AE55 AU REE A, DL HI T ARG A RS2

Browser Limits 3 "%52 FR i

Browsers place limits on the amount of time that JavaScript take to execute. This is a necessary limitation to
ensure that malicious coders can't lock up a user's browser or computer by performing intensive operations that
will never end. There are two such limits: the call stack size limit (discussed in Chapter 4) and the long-running
script limit. The long-running script limit is sometimes called the long-running script timer or the runaway script
timer, but the basic idea is that the browser keeps track of how long a script has been running and will stop it once

a certain limit is hit. When the limit is reached, a dialog is displayed to the user, such as the one in Figure 6-2.

WY 281 JavaScript IS AT I TR] PRI T BRI X — M7 L SRR, 0 P& 2D S 5 4 A REl il g
SR AR EBUE F P NS s S0 . SRR P A TR T IR CBPY =81) AN [)
AP KIEAT A BR AT I R KA AT IIAS 52 I 8 R 2 AR 52 I %, (P LG A R AU 30 U 2o
—AMNHARREEATI], — BRI — @ RN &R YUk BRI BA RS, A 2) P R — AR AE,
W 6-2 fis.

-ﬂ Stop running thie scrpl?

A scnpt on this page @ causing Internet Explorer to run slowly
If it continues ta run, your compJier may become
UNTESPONSive.

Yes Mo

Figure 6-2. Internet Explorer's long-running script warning dialog is displayed when more than 5

million statements have been executed

] 6-2 Internet Explorer Iz 47 IIACE A 0HEHE, isfriEal 5 71 7 4B m I woR

There are two ways of measuring how long a script is executing. The first is to keep track of how many
statements have been executed since the script began. This approach means that the script may run for different
periods of time on different machines, as the available memory and CPU speed can affect how long it takes to
execute a single statement. The second approach is to track the total amount of time that the script has been
executing. The amount of script that can be processed within a set amount of time also varies based on the user's
machine capabilities, but the script is always stopped after a set amount of time. Not surprisingly, each browser

has a slightly different approach to long-running script detection:

AR E R AR AT I (8] o 25— AN Irdot geit B AT 461 tT Ok PATIE 2 ik). 7R R
HAAAEAR IBLE L AT RESIBAT AN I TR, R A AT CPU B W] LU i — 2 ST vE F)3a AT P
FERRII TA) o 55 RV AT AT I R TR) o AR N I) PN R Ia AT (R A E AR D P HLas P e 22
SN, AEAIAS SR AR [€ (I R) b BB AN RS, BRI B e HKAs AT A G & v B AT AN

¢ Internet Explorer, as of version 4, sets a default limit of 5 million statements; this limit is stored in a Windows
registry setting called

HKEY CURRENT _ USER\Software\Microsoft\InternetExplorer\Styles\MaxScriptStatements.

Internet Explorer, 7E55 4 firh, W& EERIAMRSIN 5 T4kl BERSIA78AE Windows MR, 4l

HKEY CURRENT USER\Software\Microsoft\InternetExplorer\Styles\MaxScriptStatements

* Firefox has a default limit of 10 seconds; this limit is stored in the browser's configuration

settings (accessible by typing about:config in the address box) as the dom.max_script run_time key.

Firefox ERIAFRLEIA 10 #2480, Do PR HIAE MmN WA AL E Be B (FEHEEA~ %\ about:config) ## 444

dom.max_script_run_time.

* Safari has a default limit of 5 seconds; this setting cannot be altered, but you can disable the timer by enabling

the Develop menu and selecting Disable Runaway JavaScript Timer.

Safari BRINRE N 5 F0oh, SEBREARESR, HARTT LIOCHILER, 8id)5 5) Develop S b #48 1E

5 JavaScript SE I 2%

» Chrome has no separate long-running script limit and instead relies on its generic

crash detection system to handle such instances.

Chrome BA AL KIS AT IIAC R, FR A LU E (V03 1 3 ot er I 2R Gk A PSS 5l

* Opera has no long-running script limit and will continue to execute JavaScript code until it has finished, though,

due to Opera's architecture, this will not cause system instability while the execution is completed.

Opera WA KIBATIAIR S, K4hELiz1T JavaScript A EH 2580, 11T Opera 451, 4isfT 45] e
HASIFBREAEE

When the browser's long-running script limit is reached, a dialog is displayed to the user, regardless of any
other error-handling code on the page. This is a major usability issue because most Internet users are not
technically savvy and would therefore be confused about the meaning of the error message as well as which

option (to stop the script or allow it to continue) is appropriate.

200 R b A T A BRI e i A I, A — XA s TR AN BT A A AR A 1R AR AR
o X AN E R A IR, DR K2 AR P R AR BOR, 2 g R 5 BTk Rk, ANKIE N
ZIEREBAN LT (f 1 EIA BV e Gk Bis AT

If your script triggers this dialog in any browser, it means the script is simply taking too long to complete its
task. It also indicates that the user's browser has become unresponsive to input while the JavaScript code is
continuing to execute. From a developer's point of view, there is no way to recover from a long-running script
dialog's appearance; you can't detect it and therefore can't adjust to any issues that might arise as a result. Clearly,

the best way to deal with long-running script limits is to avoid them in the first place.

U ARAR PR RASAE 0 VoAb A 7 T G ARE , TR JAAR 2 UK R IR TRDR S8 AT 55« e R WL i
WAHLE JavaScript fCRGARELISATIRAS R OIEmI N AN o WTFRE W S, A ISR IS AT A 1 AE
AR, ARANRERIINENE, DIEASRE R e R T BE ML) e AR, KIS AT BIA Sy IO AL B AN B 5
TG AT o

How Long Is Too Long? fAAH“KA”?

Just because the browser allows a script to continue executing up to a certain number of seconds doesn't mean
you should allow it do so. In fact, the amount of time that your JavaScript code executes continuously should be
much smaller than the browser-imposed limits in order to create a good user experience. Brendan Eich, creator of
JavaScript, is quoted as having once said, "[JavaScript] that executes in whole seconds is probably doing

something wrong...."

WYL SOV AR SEI8 4T B 2 JEA [(I), X AR PR AT LAV I 3552 1, RN
JavaScript AIHFEEIE AT R0 I TA] R 14328 /8T W o S it 1) PR, DABIEE R 4 B F P 4458 . Brendan Eich,
JavaScript [Ei&E %, 5IHAMMTEL, “[JavaScript]la T T 33 JLFM B R AT BE 20 T4 ... ”

If whole seconds are too long for JavaScript to execute, what is an appropriate amount of time? As it turns out,
even one second is too long for a script to execute. The total amount of time that a single JavaScript operation
should take (at a maximum) is 100 milliseconds. This number comes from research conducted by Robert Miller in
1968. Interestingly, usability expert Jakob Nielsen noted in his book Usability Engineering (Morgan Kaufmann,

1994) that this number hasn't changed over time and, in fact, was reaffirmed in 1991 by research at Xerox-PARC.

WAL LR B0 JavaScript IBAT R UK T, A ARIE G N A] 2 SHacib iy, B —Fb oot i A
BATARUBABRK T o AN (¥ JavaScript #4245 H RLEL N] (G KD 22 100 2270 o XA 7 ik Robert
Miller 7 1968 4F [INF5T « 47 #1142 , 7] F & 5 Jakob Nielsen £EAth [25 /¢ AT FH ¥ T)(Morgan Kaufmann,
1944) FEREUOX B IR DN T RS o oiege, iy =58 EAE 1991 24 Xerox-PARC (i S 22 7])
WP BT JRFTHIE T L) (R

Nielsen states that if the interface responds to user input within 100 milliseconds, the user feels that he is
"directly manipulating the objects in the user interface." Any amount of time more than 100 milliseconds means
the user feels disconnected from the interface. Since the Ul cannot update while JavaScript is executing, the user

cannot feel in control of the interface if that execution takes longer than 100 milliseconds.

Nielsen #& t 1 9 1% 82 O 7E 100 Ay ma S SN, F U8 B O E R T 7 S R i % . >
R 100 =R EERE R S IA N H S OWIT T« T UL 7E JavaScript 1217 I JCiE BT, a0 A @47 i fa) 4
T 100 = F>, FH 7k AN RE IOz 26042 1 (R4

A further complication is that some browsers won't even queue Ul updates while JavaScript is executing. For
example, if you click a button while some JavaScript code is executing, the browser may not queue up the Ul
update to redraw the button as pressed or any JavaScript initiated by the button. The result is an unresponsive Ul

that appears to "hang" or "freeze."

BT R 1) AT e WE AR 7L JavaScript 14T B A UT BEFTRABAS o i dn, Wi FARAEHELE JavaScript 1845
AT pi A, b REAN S B2 4% B 1 UL BUHHESS I A, AN SN HHX AN 5 A 3
[f] JavaScript 1155 H45 5L NN UL, KBy “Htd o im 4.

Each browser behaves in roughly the same way. When a script is executing, the UI does not update from user
interaction. JavaScript tasks created as a result of user interaction during this time are queued and then executed,
in order, when the original JavaScript task has been completed. UI updates caused by user interaction are
automatically skipped over at this time because the priority is given to the dynamic aspects of the page. Thus, a
button clicked while a script is executing will never look like it was clicked, even though its onclick handler will

be executed.

BERF S &3 AOAT 0 KRBUIA . AT I, UL AR A LM BB o BRI JavaScript 415545 4 Hl 42

H 45 RAEBTINBNS, AR5 2546 JavaScript £F:55 58 UM BAZI A AR 55 AT H1 A B 2 Ul
SO A ki, DL eTE eI v EIEhA . Bk, 2 ANMEASEATIN S AN L KRR A
FIEHAL N IOFET S BIEE R onclick AIRRBAINAT T .

Even though browsers try to do something logical in these cases, all of these behaviors lead to a disjointed
user experience. The best approach, therefore, is to prevent such circumstances from occurring by limiting any
JavaScript task to 100 milliseconds or less. This measurement should be taken on the slowest browser you must

support (for tools that measure JavaScript performance, see Chapter 10).

SR AR LG DL M LR IR K Y, (RTS8 T AR R .
VEIR AP I 7k, I BREAT JavaScript ££557E 100 AP E /DI (8] P 58, et 2RO H . X Fh
DN 72 AE AR S (R e P R0 B 2 AT COR T3 JavaScript PERERI TR, ZWHE+HE) .

Yielding with Timers &Rt 28ik iR A

Despite your best efforts, there will be times when a JavaScript task cannot be completed in 100 milliseconds
or less because of its complexity. In these cases, it's ideal to yield control of the Ul thread so that UI updates may
occur. Yielding control means stopping JavaScript execution and giving the Ul a chance to update itself before

continuing to execute the JavaScript. This is where JavaScript timers come into the picture.

RERIS T 5 RSy, it 28 JavaScript 1145 KA 528 VE R IANGEAE 100 270 0l 5 /D I8 7] 4 58 B
KRGO, BEAR VL O UT 2R FE R, A U1 S5 nf BAEAT . ik =& 157 11 JavaScript 12
1T, 25 UL eFENL ST 0T, AR5 R4k SLIE1T JavaScript. T-42 JavaScript 3 B 25 E N T FATHIALET o

Timer Basics & 8Lk

Timers are created in JavaScript using either setTimeout() or setlnterval(), and both accept the same
arguments: a function to execute and the amount of time to wait (in milliseconds) before executing it. The
setTimeout() function creates a timer that executes just once, whereas the setlnterval() function creates a timer

that repeats periodically.

17t JavaScript i 1] setTimeout()X setlnterval()BI & & N 4%, AN BREE N —FEI S5 — D EHUT
HIRREL, A—ANSATE 2 AT A I TR) (L7 =& o setTimeout() B AL G EE—AN e I 4 s T —Ik, 1M
setInterval() bR EUGIEE — AN 8 I T A8 AT 1) 0 I 45

The way that timers interact with the UI thread is helpful for breaking up long-running scripts into shorter
segments. Calling setTimeout() or setinterval() tells the JavaScript engine to wait a certain amount of time and

then add a JavaScript task to the UI queue. For example:

SE R 5 UL R4S B 5 XA B T o i Kas AT A SO B M 7. A setTimeout ()54, setInterval()
151 JavaScript 51 2SR — g I (A1 AR J5 KF JavaScript AT45 45 N2 UT BAFH . 514

function greeting(){
alert("Hello world!");
H

setTimeout(greeting, 250);

This code inserts a JavaScript task to execute the greeting() function into the UI queue after 250 milliseconds
have passed. Prior to that point, all other UI updates and JavaScript tasks are executed. Keep in mind that the
second argument indicates when the task should be added to the UI queue, which is not necessarily the time that it
will be executed; the task must wait until all other tasks already in the queue are executed, just like any other task.

Consider the following:

AR R AE 250 = Fb2 5, 7] UT BAAI4E AN —A> JavaScript {T 451817 greeting)pR %L, 7EIRAN 25200, Ft
A7 Al UT BB A JavaScript fE55 AR7EIZ AT WICAE, 28 NS HER AT AN 20 RAE 5578 I 2 UT A%
2 FEASR BRI AR BRI T o IXAME S5 06 Z0AE B NS A HABAT S5 AT Z 5 A BERAAT . HIET
[l

var button = document.getElementByld("my-button");
button.onclick = function() {
oneMethod();
setTimeout(function(){
document.getElementByld("notice").style.color = "red";
§,250);

}s

When the button in this example is clicked, it calls a method and then sets a timer. The code to change the
notice element's color is contained in a timer set to be queued in 250 milliseconds. That 250 milliseconds starts
from the time at which setTimeout() is called, not when the overall function has finished executing. So if
setTimeout() is called at a point in time N, then the JavaScript task to execute the timer code is added to the UT

queue at N + 250. Figure 6-3 shows this relationship when the button in this example is clicked.

FEIXAMI 5 A i, BT A AR R BEE A A . B2 notice JUER B (114 CAS
PALFAE A G BEE, KAE 250 R ZJEUS IS . 250 288 I setTimeout()I TR THEL, 1M
AT NIEA SRS AT S R TP IR T Wik setTimeout)7ER (A1 &0 n B4R, 4184758 B 25 1
JavaScript fE45 415 n+250 FII ZIIA UL BAF o 18] 6-3 75 Hh AR rh e B4 o o I i i AR A 2 TN G &R

T T T T
X 0 50 100 350
f}lﬁ’, ------------------------- * setlimeout]) called Timer code
- queyed

Figure 6-3. The second argument of setTimeout() indicates when the new JavaScript task should be

inserted into the UI queue

K 6-3 setTimeout() 5 —ANZ Hcdi AT IR BT 1 JavaScript 45548 A 2 UL AZ1]

Keep in mind that the timer code can never be executed until after the function in which it was created is
completely executed. For example, if the previous code is changed such that the timer delay is smaller and there is
another function call after the timer is created, it's possible that the timer code will be queued before the onclick

event handler has finished executing:

Al RS A SR S R BOE AT e, A RERGRAT . B, R A R
I} S AE I ARAG B, SRS AERIEE E N a8 2 5 SR T 55— AN eR G N AU AT] BEAE onclick 1AL
SEMZ AT BAS

var button = document.getElementBylId("my-button");
button.onclick = function(){
oneMethod();
setTimeout(function(){
document.getElementByld("notice").style.color = "red";

1, 50);

anotherMethod();

If anotherMethod() takes longer than 50 milliseconds to execute, then the timer code is added to the queue
before the onclick handler is finished. The effect is that the timer code executes almost immediately after the

onclick handler has executed completely, without a noticeable delay. Figure 6-4 illustrates this situation.

a4 anotherMethod)FHAT I A E L 50 Z=Z#, 4 e I #5ACHKETE onclick Ab3 5E B2 FF A ZIBA S H o
5525 onclick AbHIZAT5EEE, @ WA AR L RIFAT , g A LR I REiR o] 6-4 BB T 1X AP .

In either case, creating a timer creates a pause in the Ul thread as it switches from one task to the next.
Consequently, timer code resets all of the relevant browser limits, including the long-running script timer. Further,
the call stack is reset to zero inside of the timer code. These characteristics make timers the ideal cross-browser

solution for long-running JavaScript code.

TEARAT PG DL, G —N I 4838 i UT Z6F2 8045, anlnl e N—MES VI B~ —MME5%. I,
S I Z AR ST BT AH S o W o B, B SIS AT AN [R] o b4k, Y R AR AR s I 28 AR TR A7 % o
X VE A 1S 2 I 28 A K2 4T JavaScript AHEHAR) 5 3 Vo 28 ff e 7 4 .

Ul Thread

Ul Queue

Ui!ﬂll‘ti-

X 0 0 100 150
liij.—:li » MTI'I‘QH‘." Timer code
hme called queued

Figure 6-4. There may be no noticeable delay in timer code execution if the function in which

setTimeout() is called takes longer to execute than the timer delay

6-4 WK setTimeout() 1) s K] T HARAESS, FEINEIL & N 43 3E W, € N 2 A RS RE 2 B4R AT

B T BB TR B TS I SE IR

Timer Precision fER2ekEE

JavaScript timer delays are often imprecise, with slips of a few milliseconds in either direction. Just because
you specify 250 milliseconds as the timer delay doesn't necessarily mean the task is queued exactly 250
milliseconds after setTimeout() is called. All browsers make an attempt to be as accurate as possible, but
oftentimes a slip of a few milliseconds in either direction occurs. For this reason, timers are unreliable for

measuring actual time passed.

JavaScript j2 I 4% SE I AEAEAMER, P2 KA JLZM . ALK RTE E € ST 250 280, JFAEIR
FESSRAE I setTimeout()Z Ja A5 250 22 M0 IS IIABAA o BTl b s il SR T e, (EE W 2
JLZ IR, BPREg . IEDUR XA BRI A il]300 S B I)

Timer resolution on Windows systems is 15 milliseconds, meaning that it will interpret a timer delay of 15 as
either 0 or 15, depending on when the system time was last updated. Setting timer delays of less than 15 can cause
browser locking in Internet Explorer, so the smallest recommended delay is 25 milliseconds (which will end up as

either 15 or 30) to ensure a delay of at least 15 milliseconds.

7E Windows R 48 L g N 48 0 #0015 280, Wi g it—"MEN 15 (e N 2R i B 5 — IR R S
TRl T AL ek 0 B 15, B B e I 2R ZE /N T+ 15 F44E Internet Explorer HP S 2500 Yo #4052, T LA/
R Ry 25 28 (SRRt a) S 15 57 300 DARAfR 4/ 15 2R ATl .

This minimum timer delay also helps to avoid timer resolution issues in other browsers and on other systems.

Most browsers show some variance in timer delays when dealing with 10 milliseconds or smaller.

I N2 S U270 T3 G A0 R SR B AR 0 05 20 0 . K2 000 W 7
EARAERT T 10 ZERB I L, 2 R

Array Processing with Timers 7E$(4H 4b ¥ 43 52 I 85

One common cause of long-running scripts is loops that take too long to execute. If you've already tried the
loop optimization techniques presented in Chapter 4 but haven't been able to reduce the execution time enough,
then timers are your next optimization step. The basic approach is to split up the loop's work into a series of

timers.

N I AKIEAT ARG ER T ORI ATIN). AR A S T A MY E A A AR I A b
AR, AHIE AL IR KIS AT I E], S A E I SR IR~ — MU DB HREATT OB 00 2R AR 73
fift 2 € NP8

Typical loops follow a simple pattern, such as:
IR T

for (var i=0, len=items.length; i < len; i++){

process(items[i]);

Loops with this structure can take too long to execute due to the complexity of process(), the size of items, or
both. In my book Professional JavaScript for Web Developers, Second Edition (Wrox 2009), I lay out the two

determining factors for whether a loop can be done asynchronously using timers:

IXFERIE IR S5 a7 I)i K LR =, process()IN R4S, items IR/, BN E A o ERAEAD
(Professional JavaScript for Web Developers) 55 i (Wrox 2009) H, F2& & 45]] I 2 A RIEEA 1)

PHASPEE P IR 3R -

* Does the processing have to be done synchronously?
LA R R A AU [0 b PR 2

* Does the data have to be processed sequentially?

B Wb J0HZ Wy b P 2

If the answer to both of these questions is "no," then the code is a good candidate for using timers to split up

the work. A basic pattern for asynchronous code execution is:

WREXPIA RIS E TS N2 il A — FhEASR DA AR A F

var todo = items.concat(); //create a clone of the original
setTimeout(function(){
//get next item in the array and process it
process(todo.shift());
//if there's more items to process, create another timer
if(todo.length > 0){
setTimeout(arguments.callee, 25);
} else {
callback(items);

}

1, 25);

The basic idea of this pattern is to create a clone of the original array and use that as a queue of items to
process. The first call to setTimeout() creates a timer to process the first item in the array. Calling todo.shift()
returns the first item and also removes it from the array. This value is passed into process(). After processing the
item, a check is made to determine whether there are more items to process. If there are still items in the todo
array, there are more items to process and another timer is created. Because the next timer needs to run the same
code as the original, arguments.callee is passed in as the first argument. This value points to the anonymous
function in which the code is executing. If there are no further items to process, then a callback() function is

called.

XA A B AR QIR DML ek, Re BN 5. 2RI setTimeout() B4
ANE I AR ER RS R R S NI U todo.shife()ai [F1E R S5 N IRAR JE 4 AL P B . BRAE AR 0 2
Hid 4y process()o R, KA TIEA LT LA B . DR todo AASHIEA WA, ARz
I & . DDA RS E I8 A5 2 AT M R A, BTBLSS — D28tk N arguments.callee. BEAR TR 1) 57 IEAE12
AT A% s A G RASFAT N 7R BEAR B, R callback() R4

Because this pattern requires significantly more code that a regular loop, it's useful to encapsulate this

functionality. For example:

PR SR L 7 2 A0S, AlRr sl e darieteok . it

function processArray(items, process, callback){
var todo = items.concat(); //create a clone of the original
setTimeout(function(){
process(todo.shift());
if (todo.length > 0){
setTimeout(arguments.callee, 25);
} else {
callback(items);

}
1, 25);

The processArray() function implements the previous pattern in a reusable way and accepts three arguments:
the array to process, the function to call on each item, and a callback function to execute when processing is

complete. This function can be used as follows:

processArray() b £ LA — i 5T A7 SUSEBL TOERT ORI, IF I A2 BT, X RESTIR
HIAE B e K, AR EES AN PAT (R 1 e AL e BOHVR G R

var items = [123, 789, 323, 778, 232, 654, 219, 543, 321, 1607];
function outputValue(value){
console.log(value);
H
processArray(items, outputValue, function(){

console.log("Done!");

;s

This code uses the processArray() method to output array values to the console and then prints a message
when all processing is complete. By encapsulating the timer code inside of a function, it can be reused in multiple

places without requiring multiple implementations.

PEACHE A] process Array() /7 2K E AL St 2 23, >4 B A AR BEGS SRIN PEAT B — 25T 6L o T IR 2 I
AU B A — DR AUE, WS A E T M C T 2 L

Splitting Up Tasks M #fE4%

What we typically think of as one task can often be broken down into a series of subtasks. If a single function
is taking too long to execute, check to see whether it can be broken down into a series of smaller functions that
complete in smaller amounts of time. This is often as simple as considering a single line of code as an atomic task,
even though multiple lines of code typically can be grouped together into a single task. Some functions are

already easily broken down based on the other functions they call. For example:

BATEHAG— MM IR R TAES . WA REO AT AR, WA B F E A Al LA il —
R HVBENS e 1) S R BN R B R —ATARS] A AR — AN R TS5, ZATUEAL G/
AISIATSS o ELE R BT T o0 BB EAT IR 20 il

function saveDocument(id){
//save the document
openDocument(id)
writeText(id);
closeDocument(id);
//update the UI to indicate success

updateUI(id);

If this function is taking too long, it can easily be split up into a series of smaller steps by breaking out the
individual methods into separate timers. You can accomplish this by adding each function into an array and then

using a pattern similar to the array-processing pattern from the previous section:

AR B ECEATIN ARG, B Rl R AN R R, JENT R e I g R o] LR BF
A BRBETBIN— N, SRS A AT 3R 2 A R 4L AR BEAR S

function saveDocument(id){
var tasks = [openDocument, writeText, closeDocument, updateUI];
setTimeout(function(){
//execute the next task
var task = tasks.shift();
task(id);
//determine if there's more
if (tasks.length > 0){
setTimeout(arguments.callee, 25);
H

1, 25);

This version of the function places each method into the tasks array and then executes only one method with
each timer. Fundamentally, this now becomes an array-processing pattern, with the sole difference that processing
an item involves executing the function contained in the item. As discussed in the previous section, this pattern

can be encapsulated for reuse:

RATANRGEENTHETEANMES AL, RIGAERA R SR 7% WRA L3, BUE e o
AePEARS, AT ANA] s AR P O S AR T o IR AT PR Y, R R A -

function multistep(steps, args, callback){
var tasks = steps.concat(); //clone the array
setTimeout(function(){
//execute the next task
var task = tasks.shift();
task.apply(null, args || []);

//determine if there's more

if (tasks.length > 0){
setTimeout(arguments.callee, 25);
}else {
callback();
H

§>25);

—

The multistep() function accepts three arguments: an array of functions to execute, an array of arguments to
pass into each function when it executes, and a callback function to call when the process is complete. This

function can be used like the following:

multistep() B E LM =DM ZH: N THATHREEA, WD REERIES S EEA, b4
DI S S GAE R U

function saveDocument(id){
var tasks = [openDocument, writeText, closeDocument, updateUI];
multistep(tasks, [id], function(){

alert("Save completed!");

s

-~

Note that the second argument to multistep() must be an array, so one is created containing just id. As with
array processing, this function is best used when the tasks can be processed asynchronously without affecting the

user experience or causing errors in dependent code.

VAL 4 multistep() 5 NS HLIUERAL, BN RS A ido IR BIR:, AR I
BTSSR AT55 7T LU0 AR PRI AN 52 0 T 7 456 2 SEOHORA) H 4

Timed Code FRETIZFTAAS

Sometimes executing just one task at a time is inefficient. Consider processing an array of 1,000 items for
which processing a single item takes 1 millisecond. If one item is processed in each timer and there is a delay of
25 milliseconds in between, that means the total amount of time to process the array is (25 + 1) x 1,000 = 26,000
milliseconds, or 26 seconds. What if you processed the items in batches of 50 with a 25-millisecond delay
between them? The entire processing time then becomes (1,000 / 50) x 25 + 1,000 = 1,500 milliseconds, or 1.5
seconds, and the user is still never blocked from the interface because the longest the script has executed

continuously is 50 milliseconds. It's typically faster to process items in batches than one at a time.

AR APAT —AMES RO o B IEIXFE— PGS AN 1'000 NTIFRIEA, BEALEE—A
WU 4 1 28D WA E N A A E AN, AR AL B) (] R 25 m AR, IS b PR 1) S TR
FE(25+1) x 1'000 = 26'000 Z=F>, i 26 0. WitkBpALabEE 50 4, Rtz R 25 2o B AR ?
FEAN AR FE I FEAZ B(1'000 / 50) x 25 + 1'000 = 1'500 =0, ik 1.5 2, i HLFH P AR 252050 S 1 FH %,

A HIAIZAT HFFEE T 50 280 T8 At AL BE LURE AR BE— N R

If you keep 100 milliseconds in mind as the absolute maximum amount of time that JavaScript should be
allowed to run continuously, then you can start optimizing the previous patterns. My recommendation is to cut
that number in half and never let any JavaScript code execute for longer than 50 milliseconds continuously, just to

make sure the code never gets close to affecting the user experience.

W RARICATE JavaScript FELLISAT BN] 72 100 =88, I A/RA] LA e AT IR L. B g U2 s
AR, AR JavaScript fUSFFSHEATEIE 50 220, FUEN T RAU A A 2 5 H
JURL

It's possible to track how long a piece of code has been running by using the native Date object. This is the

way most JavaScript profiling works:

AR J5UE) Date X R EREAMARIS IS AT IN TR o 1K K24 JavaScript 73 T H BRI 19 T AE 75 5

var start = +new Date(),
stop;
someLongProcess();

stop = +new Date();

if(stop-start < 50){
alert("Just about right.");
} else {

alert("Taking too long.");

——

Since each new Date object is initialized with the current system time, you can time code by creating new
Date objects periodically and comparing their values. The plus operator (+) converts the Date object into a
numeric representation so that any further arithmetic doesn't involve conversions. This same basic technique can

be used to optimize the previous timer patterns.

HI RSB AN Data X 52 DL { AR GEN [RITAA 40, £3n] LU PEML B i B Data X 50T FLBCEAT 4L,
PIARBACHIZATIN (8] IS (+) K Data X G — T, 7R SEIIEC A R A D e 1. 1K
RO AT A LU IR 5 I SRR

The processArray() method can be augmented to process multiple items per timer by adding in a time check:

processArray() J £ ik — NI TEAS AL, PT7EREAN & I 85 T AT 2 AL 3

function timedProcessArray(items, process, callback){
var todo = items.concat(); //create a clone of the original
setTimeout(function(){
var start = +new Date();
do {
process(todo.shift());
} while (todo.length > 0 && (+new Date() - start < 50));
if (todo.length > 0){
setTimeout(arguments.callee, 25);
}else {

callback(items);

}

1, 25);

-~

The addition of a do-while loop in this function enables checking the time after each item is processed. The
array will always contain at least one item when the timer function executes, so a post-test loop makes more sense
than a pretest one. When run in Firefox 3, this function processes an array of 1,000 items, where process() is an
empty function, in 38—43 milliseconds; the original processArray() function processes the same array in over

25,000 milliseconds. This is the power of timing tasks before breaking them up into smaller chunks.

PERRETTR N T —A do-while fEHR, & AEREANHUA AL I 2 J5 AT I] o 52 I 25 bR B80S AT I 250 T A7
TERD—AI, Fril i gE s A A B . {E Firefox 3 Y, W process()&— Nk, b —A
1'000 AN IRU R ZH 75 22 38 - 34 =A% JRAAT processArray ()R ZUAL B[R] AN KU 75 258 1 25'000 =70 . Xt
e IAT S5 R, RE A AT 55 0 R B TN BT o

Timers and Performance ER 2 5MAE

Timers can make a huge difference in the overall performance of your JavaScript code, but overusing them
can have a negative effect on performance. The code in this section has used sequenced timers such that only one
timer exists at a time and new ones are created only when the last timer has finished. Using timers in this way will

not result in performance issues.

SE I AR JavaScript AU B AAMERER DL B2, (H LA E NI x T P fe - AR ST i . Ay
AR AE AL E I 851, (Rl I T AT AN E I A7 AR, AT 23X N A 4RI A B AN B e I
o LKAy AR 2 N s AN 23 i SR R e)

Performance issues start to appear when multiple repeating timers are being created at the same time. Since
there is only one UI thread, all of the timers compete for time to execute. Neil Thomas of Google Mobile

researched this topic as a way of measuring performance on the mobile Gmail application for the iPhone and

Android.

M ZAFE) E I AP AN O s AR I . DR A > UL 2R, T e I 28 s 4 ia A7 I 1]
Google Mobile [1) Neil Thomas 4 I i) @/ Ayl &V B8 (0 7775 8E4 T8 5T, %1% iPhone A1 Android FizAT(#

#) Gmail F£/% .

Thomas found that low-frequency repeating timers—those occurring at intervals of one second or
greater—had little effect on overall web application responsiveness. The timer delays in this case are too large to
create a bottleneck on the UI thread and are therefore safe to use repeatedly. When multiple repeating timers are
used with a much greater frequency (between 100 and 200 milliseconds), however, Thomas found that the mobile

Gmail application became noticeably slower and less responsive.

Thomas A IR A) HL 52 5 I s —— (IR AE 1 FPal 1 A0 A E—— L P AN 2 i A 00 G T R o 31X
Pt 0 T % I 5% SE IRl i UT LR At (e, R n] e e A] . 2 e g A o

FIER (RIBEAE 100 2] 200 ZFP 2 [6]) , Thomas R INFEEN Gmail)7 BAME, V%,

The takeaway from Thomas's research is to limit the number of high-frequency repeating timers in your web
application. Instead, Thomas suggests creating a single repeating timer that performs multiple operations with

each execution.

Thomas WFFEIK & A2 A8, EEAERINIFY GTNH Hh R b A2 5 N s 80 . [N, Thomas i3 6
HE AN PR R E N A, RRRIAT 251

Web Workers BT T. A2

Since JavaScript was introduced, there has been no way to execute code outside of the browser Ul thread. The
web workers API changes this by introducing an interface through which code can be executed without taking
time on the browser Ul thread. Originally part of HTML 5, the web workers API has been split out into its own
specification (http://www.w3.org/TR/workers/); web workers have already been implemented natively in Firefox

3.5, Chrome 3, and Safari 4.

H JavaScript W4 ISR, EBA INEERI WA UL LR SMsAT A5 . 0T T NZefs APL 25038 1 XAk
o, eI AR, ARSI AT AN A S UT 2RI 1a] . VR b &) HTML 5 1384, Pt

T NZEFE AP L4045 25 H 25 N ST AR YE Chttp://www.w3.org/TR/workers/) o W 11 T N\ 267 ELZ8 4% Firefox

3.5, Chrome 3, I Safari4 Ji/ 4528,

Web workers represent a potentially huge performance improvement for web applications because each new
worker spawns its own thread in which to execute JavaScript. That means not only will code executing in a

worker not affect the browser UI, but it also won't affect code executing in other workers.

W TN B R FOR A A2 — BRI EORPERESE T, RUABT I T NEREAE B R hisdT
JavaScripte XEMKFE, TALRH ARIIZIT AA S IR WA UL i H A2 g dle TAZ R+
BAT A .

Worker Environment T AZFRE/TEE

Since web workers aren't bound to the UI thread, it also means that they cannot access a lot of browser
resources. Part of the reason that JavaScript and Ul updates share the same process is because one can affect the
other quite frequently, and so executing these tasks out of order results in a bad user experience. Web workers
could introduce user interface errors by making changes to the DOM from an outside thread, but each web worker
has its own global environment that has only a subset of JavaScript features available. The worker environment is

made up of the following:

H TP 0T TN REAGEE UL b, XM AT PR AN RE Vs in) VF 2 3 WS 28 5505 . JavaScript A1 UT 58T
LR AR B 23 B DR AT 2 T B AR, an S AT 25 R 450 2 SORPEE IR FH P AR o 19 00 T N2k
P& 250 DOM #4350 f i s, RN 0 NG RRH 1 O A RT3, LA JavaSeript it
AT TANERERISAT IS thH 2138 241 ke

* A navigator object, which contains only four properties: appName, appVersion, userAgent, and platform

—ANEEs A g, HAEIUANENE: appName, appVersion, userAgent, 1 platform

* A location object (same as on window, except all properties are read-only)

—™ location X% (Fl window HL[—FF, P2 A S K5z m)

* A self object that points to the global worker object

A self X B4R) 4R TN REXT S

+ An importScripts() method that is used to load external JavaScript for use in the worker

—A importScripts() /775, A T NZFE] LLINZ& 458 JavaScript SCHF

» All ECMAScript objects, such as Object, Array, Date, etc.

JIif ECMAScript X} %, #U1 Object, Array, Data, %555,

» The XMLHttpRequest constructor

XMLHttpRequest #Jif %%

* The setTimeout() and setInterval() methods

setTimeout()F! setInterval() /7%

* A close() method that stops the worker immediately

close() /7 ¥2:m] 37 R4 1 TN 2 FE

Because web workers have a different global environment, you can't create one from any JavaScript code. In
fact, you'll need to create an entirely separate JavaScript file containing just the code for the worker to execute. To

create a web worker, you must pass in the URL for the JavaScript file:

PRk P4 0 TN R A AN R R 42 SR AT 3G, URANREAE JavaScript AU P, sk b, JRFFZAIE —A
SEAIRALH] JavaScript SCIF, QWERLAE T NP IsAT A . LEIEM T T NLRE, RUD2E NIXA

JavaScript 3L/ 1) URL:

var worker = new Worker("code.js");

Once this is executed, a new thread with a new worker environment is created for the specified file. This file is
downloaded asynchronously, and the worker will not begin until the file has been completely downloaded and

executed.

BEARTS — EARAT, B AR SR B ASB R — AN 1 RIS AT I BT . Ibse b P F ik, A
B NI L A A R B T ANERE.

Worker Communication T AZFEAH

Communication between a worker and the web page code is established through an event interface. The web
page code can pass data to the worker via the postMessage() method, which accepts a single argument indicating
the data to pass into the worker.There is also an onmessage event handler that is used to receive information from

the worker. For example:

TNEEFEFA) DO AR i 4 D AT A B, W ARG T Il postMessage() 77¥2: 1) T N R A% 35 i
BN, ARy T NEREE s . o, 78 T ANZRET LA onmessage SRR T H0UE 1 -
il -

var worker = new Worker("code.js");

worker.onmessage = function(event){
alert(event.data);

I8

worker.postMessage("Nicholas");

The worker receives this data through the firing of a message event. An onmessage event handler is defined,
and the event object has a data property containing the data that was passed in. The worker can then pass

information back to the web page by using its own postMessage() method:

TR message SHAFHECEA . IXHLE SCT A onmessage FHFAIN, X ZRAAT > data J&
PEAF AR N A . TN I B O postMessage() /5 V54415 JEUR [91 45 T .

//inside code.js
self.onmessage = function(event){

self.postMessage("Hello, " + event.data + "!");

55

The final string ends up in the onmessage event handler for the worker. This messaging system is the only way

in which the web page and the worker can communicate.

R TR AT TNLFE R onmessage SRR o T B AR GEE DU AN TN ZRE L [RIE— (A2 i A%

Only certain types of data can be passed using postMessage(). You can pass primitive values (strings,
numbers, Booleans, null, and undefined) as well as instances of Object and Array; you cannot pass any other
data types. Valid data is serialized, transmitted to or from the worker, and then deserialized. Even though it seems
like the objects are being passed through directly, the instances are completely separate representations of the

same data. Attempting to pass an unsupported data type results in a JavaScript error.

ST YKl v] LI HT postMessage()idi o A n] LIAL i J5U4R{E (string, number, boolean, null
Al undefined) , tn]LIA%id Object Ml Array 1561, JLERRMASRVE 1o A7 REERHIFHIL, A itk
T AR, WIERIPHI. BIER BN G EEA Tid 2, SEEIELSER R MR g e iR . Ik
A3 — AN SCRF I B SR TR S 22 JavaScript 1%

Loading External Files fn#kshB3c

Loading extra JavaScript files into a worker is done via the importScripts() method, which accepts one or
more URLs for JavaScript files to load. The call to importScripts() is blocking within the worker, so the script
won't continue until all files have been loaded and executed. Since the worker is running outside of the UI thread,

there is no concern about Ul responsiveness when this blocking occurs. For example:

T NZFR R importScripts() /775 ME AN JavaScript X, EHRI—A~8iZ A~ URL 41, $RH 2N
(1) JavaScript SCEFRINE. TN LABH 2E 5 A A importScripts(), LR T SCAF I 52 I F AT 2)5
JIAA G G217 T T ANERFEAE UL e 2 4MEAT, IXPPBHIEA S UL WS, 40

//inside code.js
importScripts("filel.js", "file2.js");
self.onmessage = function(event){

self.postMessage("Hello, " + event.data + "!");

}s

The first line in this code includes two JavaScript files so that they will be available in the context of the

worker.

IEARHS 25— AT 5 AN JavaScript SUIF, EATAE T AL EH

Practical Uses SEBpFlig

Web workers are suitable for any long-running scripts that work on pure data and that have no ties to the
browser Ul. This may seem like a fairly small number of uses, but buried in web applications there are typically

some data-handling approaches that would benefit from using a worker instead of timers.

W TN REE & TR Leai it sl b ds UL R R KISAT A . EFERMAEA KR, T
TN IR Il AT — LR AL BRI BERS 52 20 T TR, AN SE N4

Consider, for example, parsing a large JSON string (JSON parsing is discussed further in Chapter 7). Suppose
that the data is large enough that parsing takes at least 500 milliseconds. That is clearly too long to allow
JavaScript to run on the client, as it will interfere with the user experience. This particular task is difficult to break

into small chunks with timers, so a worker is the ideal solution. The following code illustrates usage from a web

page:

IR, T MK JSON P47 A (JSON MMl £ Ja thi 25 LR i) o Escids 2y
K, EDTHE 500 ZRA BECRMENTES . IR BRI RIS T LU T ANRE SetF JavaScript £E%) i L1847
E, PUNES T RS . PR35 XE LA i oM T g I 88 10/ NBUTE ST, BT DL N 10 BEAR (R i ok s
Fo N U] T EAER BTN

var worker = new Worker("jsonparser.js");
//when the data is available, this event handler is called
worker.onmessage = function(event){

//the JSON structure is passed back

var jsonData = event.data;

//the JSON structure is used

evaluateData(jsonData);

¥

//pass in the large JSON string to parse

worker.postMessage(jsonText);

The code for the worker responsible for JSON parsing is as follows:

TR 5157 JSON f#fr, Ul ke

//inside of jsonparser.js
//this event handler is called when JSON data is available
self.onmessage = function(event){

//the JSON string comes in as event.data

var jsonText = event.data;

//parse the structure

var jsonData = JSON.parse(jsonText);

//send back to the results

self.postMessage(jsonData);

Note that even though JSON.parse() is likely to take 500 milliseconds or more, there is no need to write any
additional code to split up the processing. This execution takes place on a separate thread, so you can let it run for

as long as the parsing takes without interfering with the user experience.

IEVE R, HI# JSON.parse()F HE 75 2 500 2Rl E 2 N 0], 038 00 B I BE 2 ARHE Sk 7 fift A B FE .
AL FE R R R AAE AN R, BT AR AT DAk e HAs AT se A R AN & TP FAR S

The page passes a JSON string into the worker by using postMessage(). The worker receives the string as
event.data in its onmessage event handler and then proceeds to parse it. When complete, the resulting JSON
object is passed back to the page using the worker's postMessage() method. This object is then available as
event.data in the page's onmessage event handler. Keep in mind that this presently works only in Firefox 3.5 and

later, as Safari 4 and Chrome 3's implementations allow strings to be passed only between page and worker.

GUTHI{# FH postMessage()f5— A~ JISON F4#F A4y TNk FE . T AL FEAE 1) onmessage F1F A i £l
AR & event.data, SRJGITFAGIFATE . S8 RS T A 1) TSON X Sl ik TN G R postMessage()
T3 AR LI o AR)i X BT 1 BT onmessage HiAF AR event.data. 15iC AT, BB TRE L AESE Firefox 3.5
R B A HIZAT, 1M Safari 4 I Chrome 3 HY, GUIHIAI T NZeRE 2 0] A vpAL s 275 o

Parsing a large string is just one of many possible tasks that can benefit from web workers. Some other

possibilities are:
T — N KPR RV 2 2 80 T W 00 NSRRI S — o LB AT RS2 S AT 55
* Encoding/decoding a large string
/MRS — AN KA R
» Complex mathematical calculations (including image or video processing)
RORHUFIe A (AR R BT PED
* Sorting a large array
KA H P

Any time a process takes longer than 100 milliseconds to complete, you should consider whether a worker

solution is more appropriate than a timer-based one. This, of course, is based on browser capabilities.

AL 100 ZZFPAOALE, HEW 7% 18 T AR TT SRAR LR TR N M I8 . 9%, IEEIE
TR AR A SR TR

Summary &4

JavaScript and user interface updates operate within the same process, so only one can be done at a time. This
means that the user interface cannot react to input while JavaScript code is executing and vice versa. Managing
the Ul thread effectively means ensuring that JavaScript isn't allowed to run so long that the user experience is

affected. To that end, the following should be kept in mind:

JavaScript A1 i BB [l — AN REFENIZAT, [l — I 2 U7 L rp AN T LUEAT « X R 2 JavaScript
FCRBIEAEIZATING, R FRIANRE AN, [ZIRIR o AT 288 PE UT LRt it 224 O JavaScript AN fEie AT
KK, Blsgmi] k. fdm, RZEICW N LS

* No JavaScript task should take longer than 100 milliseconds to execute. Longer execution times cause a

noticeable delay in updates to the UI and negatively impact the overall user experience.

JavaScript B AT I [AIA N IZGE L 100 280 KBTI A T 20 UL S8 I T 8408 1 EIR , - AT 6 2 44
FH P ARS8 7= A A7 1 52

* Browsers behave differently in response to user interaction during JavaScript execution.
Regardless of the behavior, the user experience becomes confusing and disjointed when JavaScript takes a long

time to execute.

JavaScript AT, W AR N] AS B AT W AFAEZE R JCIR WA, JavaScript (I (A2 47K S EUH
ORI R FLAT S o

* Timers can be used to schedule code for later execution, which allows you to split up long-running scripts into a

series of smaller tasks.

SE I e v T AR AT, AR AT DR AT A i e — R AV BT 55

» Web workers are a feature in newer browsers that allow you to execute JavaScript code outside of the UI thread,

thus preventing Ul locking.

W TN R R B s S e A SCRF IR, & SEVRRAE UL RRE 2 AMEAT JavaScript 405 M S 8l € UL

The more complex the web application, the more critical it is to manage the Ul thread in a proactive manner.

No JavaScript code is so important that it should adversely affect the user's experience.

WO IR PP 2 2%, B 3l 35 B UT 2R bl W AS 2. AT T4 JavaScript 405] LU 2L 81 7o
VEZ] ARG (RS

BHE Ajax R JavaScript 1 XML

Ajax is a cornerstone of high-performance JavaScript. It can be used to make a page load faster by delaying
the download of large resources. It can prevent page loads altogether by allowing for data to be transferred
between the client and the server asynchronously. It can even be used to fetch all of a page's resources in one
HTTP request. By choosing the correct transmission technique and the most efficient data format, you can

significantly improve how your users interact with your site.

Ajax & HPERE JavaScript (UHEA7 . B AT LB I SEIE F SO B3 T i st . el e %) i AR
G5 N0 AR, R G USRI g . A TAE— I HTTP 35 3K AP RIS BT) B3 Y. i
FE LA A SRR e A7 R A i 2, ARnT DU 25 258) 55 Xl 2 1) (4 B3

This chapter examines the fastest techniques for sending data to and receiving it from the server, as well as the

most efficient formats for encoding data.

A5 RS A WO B B R AR, DA A A8 28 G i s 2o
Data Transmission #(#E &%

Ajax, at its most basic level, is a way of communicating with a server without unloading the current page; data
can be requested from the server or sent to it. There are several different ways of setting up this communication
channel, each with its own advantages and restrictions. This section briefly examines the different approaches and

discusses the performance implications of each.

Ajax, {EERIEAMNIZIT, 2 —Ph-5 M55 S8 T AN B AT G 10759, Bl A 55 3 3045 2%
LS5 o AT 2 PSRN I 3 A IR RIS, RERI VAT H QP RIR G AT) 2t A X 4
AFTTE I E BXTERERI I .

Requesting Data &K $(2
There are five general techniques for requesting data from a server:

A7 TR R T i JIR 55 A 0 SR E -

* XMLHttpRequest (XHR)

* Dynamic script tag insertion 2} 2 JHIA KR 2546 A
* iframes

* Comet

« Multipart XHR Z#7rf XHR

The three that are used in modern high-performance JavaScript are XHR, dynamic script tag insertion, and
multipart XHR. Use of Comet and iframes (as data transport techniques) tends to be extremely situational, and

won't be covered here.

LEAR M B TavaScript *FE FH 0 = Bl A S XHR, ZhAMAbRZHE ARIZ 54 1 XHR. {81 Comet
Al iframe Cff 4 B AL S BoAR) TEAERMREIL, AEXEITE.

XMLHttpRequest

By far the most common technique used, XMLHttpRequest (XHR) allows you to asynchronously send and
receive data. It is well supported across all modern browsers and allows for a fine degree of control over both the
request sent and the data received. You can add arbitrary headers and parameters (both GET and POST) to the
request, and read all of the headers returned from the server, as well as the response text itself. The following is an

example of how it can be used:

H RT3 77, XMLHttpRequest (XHR) SRS PO E I . By B S 28 S e AR 4 52
FEEL 1 FLRENE RS A0 2 A SRR B ART LA SRR SOH S IR R IR A5 SR S5 (G
GET A1 POST) , JFEEHUM ARS8 IR I SLA5 5, DAL N SCA B 5o BUR 2 Al 7s il

var url = '/data.php';
var params = [
'id=934875",
Timit=20'
I;
var req = new XMLHttpRequest();

req.onreadystatechange = function() {

if (req.readyState === 4) {
var responseHeaders = req.getAllResponseHeaders(); // Get the response headers.
var data = req.responseText; / Get the data.

// Process the data here...

H
req.open('GET', url +'?' + params.join('&"), true);
req.setRequestHeader("X-Requested-With', 'XMLHttpRequest'); // Set a request header.

req.send(null); // Send the request.

This example shows how to request data from a URL, with parameters, and how to read the response text and

headers. A readyState of 4 indicates that the entire response has been received and is available for manipulation.

UEB s 1 W] AN URL W5 sk ¥t , (IS %, LA AT IO i 4l SCRISK AR B o readyState 551 4 Ko
HEAS Y RS E O e TR

It is possible to interact with the server response as it is still being transferred by listening for readyState 3.

This is known as streaming, and it is a powerful tool for improving the performance of your data requests:

readyState %5 1 3 W7 LN IEAE 5 iR G548 A0 T, W NARSOEAE MR 2 o IXAURPTIR IR, et
e Bl I SRR RE I 5K T AL

req.onreadystatechange = function() {
if (req.readyState === 3) { // Some, but not all, data has been received.

var dataSoFar = req.responseText;

}

else if (req.readyState === 4) { // All data has been received.

var data = req.responseText;

Because of the high degree of control that XHR offers, browsers place some restrictions on it. You cannot use
XHR to request data from a domain different from the one the code is currently running under, and older versions
of IE do not give you access to readyState 3, which prevents streaming. Data that comes back from the request is

treated as either a string or an XML object; this means large amounts of data will be quite slow to process.

H1F XHR $24E 7m0 i, S as fe misghn 728G ARABERE XHR A T2 4T (140
B2 AR EAE, T H RS TE AL readyState 3, "EANIFF . AIERIR [BHR R — 775 B
oE A XML XGRS, X R AL B AR AT 4 5218

Despite these drawbacks, XHR is the most commonly used technique for requesting data and is still the most

powerful. It should be the one you look to first.

JUEAIRLEE T, XHR T2 5 A3 SREBARER, R sm K. BN O IR

POST versus GET when using XHR. f#f] XHR B, [{#f POST &2 GET

When using XHR to request data, you have a choice between using POST or GET. For requests that don't
change the server state and only pull back data (this is called an idempotent action), use GET. GET requests are

cached, which can improve performance if you're fetching the same data several times.

R XHR 3R N, UR0T LLUESE POST 5 GET. W1 5 RN A8 AR 45 R A8 SR I R s (OB
TERSEBN) WAL GET. GET SRz ofitd R, WAk 2 AR O [R] 1 e ml 32 PR fE

POST should be used to fetch data only when the length of the URL and the parameters are close to or exceed
2,048 characters. This is because Internet Explorer limits URLSs to that length, and exceeding it will cause your

request to be truncated.

HA Y URL IS T T 2'048 /47 A4 H POST $EHUE s - KA Internet Explorer Pl il URL
K, K SEIER (S50 kb,

Dynamic script tag insertion ZhZAMAFFEREA

This technique overcomes the biggest limitation of XHR: it can request data from a server on a different
domain. It is a hack; instead of instantiating a purpose-built object, you use JavaScript to create a new script tag

and set its source attribute to a URL in a different domain.

GBI T XHR 8 KR & T BUAAS RS Al 55 4 AR o 32 — PR HoR, AE S
Bl — LIRS, kM JavaScript G T NHAKRRE, JRREE YR M BEE D — N8 A R

URL.

var scriptElement = document.createElement('script’);
scriptElement.src = 'http://any-domain.com/javascript/lib.js';

document.getElementsByTagName r(‘head')[0].appendChild(scriptElement);

But dynamic script tag insertion offers much less control than XHR. You can't send headers with the request.
Parameters can only be passed using GET, not POST. You can't set timeouts or retry the request; in fact, you
won't necessarily know if it fails. You must wait for all of the data to be returned before you can access any of it.

You don't have access to the response headers or to the entire response as a string.

EE B A AFR A5 XHR A EE R Bt 5 /D (P2 o AR AN RETE L 15 SR AA A5 Bk Z U R GET
JridAids, ABEH] POST. PRANAE B BT SR AN B, Sefr b, RN BEANTE E 2 BRI T . AR
SR BITAT Bl R [22 5 A T AT I EATT o ARANRED) Wi AR I Sk BB U 1) 7 455 H3 SR i 48 i [4

o

This last point is especially important. Because the response is being used as the source for a script tag, it must
be executable JavaScript. You cannot use bare XML, or even bare JSON; any data, regardless of the format, must

be enclosed in a callback function.

dJr RARH EL R IR i AR SO IR BIASARZE (R, & 20 ml AT 1) JavaScript. /RANREAEH]
XML, siE4R JISON, R8s, oAt amkal, WbZde—Anli e Bz gl 41 Bk

var scriptElement = document.createElement('script’);
scriptElement.src = 'http://any-domain.com/javascript/lib.js';

document.getElementsByTagName r('head')[0].appendChild(scriptElement);

function jsonCallback(jsonString) {
var data = ('(' + jsonString +")");

// Process the data here...

-~

In this example, the lib.js file would enclose the data in the jsonCallback function:

FEXAM T, libjs SCPRRE R jsonCallback R 412504k «

jsonCallback({ "status": 1, "colors": ["#fff", "#000", "#ff0000"] });

Despite these limitations, this technique can be extremely fast. The response is executed as JavaScript; it is not
treated as a string that must be further processed. Because of this, it has the potential to be the fastest way of
getting data and parsing it into something you can access on the client side. We compare the performance of

dynamic script tag insertion with the performance of XHR in the section on JSON, later in this chapter.

JUEAA XL, R AR AR AR R . o Y 25 LR IEAT JavaSecript, AN AR N EATF LS gk —
SPREER, IERCA W, e AT RE R v LSRN S B T V. BRATTERAR T B A AR 24 A
XHR HJPERE, 7EASE S JSON — i,

Beware of using this technique to request data from a server you don't directly control. JavaScript has no
concept of permission or access control, so any code that you incorporate into your page using dynamic script tag
insertion will have complete control over the page. This includes the ability to modify any content, redirect users
to another site, or even track their actions on this page and send the data back to a third party. Use extreme caution

when pulling in code from an external source.

T /N X B AR ARAS R B 424 I (R R 25 B skt o JavaScript VA BB B In) 45 1 1 M2
It AR I8 BT ATATT 48 Bh 2R A BR 25458 N (KA QR A RT LA 56 P RN T B SUEAT AR K5
HE [2 53— Ak, SRR AT AE SO b A B AT A B AR 4 5 =5 AT AN AR I 556 A

'MI%L'/J\/L\‘\ °

Multipart XHR £ #84 XHR

The newest of the techniques mentioned here, multipart XHR (MXHR) allows you to pass multiple resources
from the server side to the client side using only one HTTP request. This is done by packaging up the resources
(whether they be CSS files, HTML fragments, JavaScript code, or base64 encoded images) on the server side and
sending them to the client as a long string of characters, separated by some agreed-upon string. The JavaScript
code processes this long string and parses each resource according to its mime-type and any other "header" passed

with it.

KEAAEHIMEA, £2865r XHR (MXHR) FVFAR A A~ HTTP 35 35Kt T LA IR 55 4 i 3Rk 2
H . EAERDRE B (AT CSS 3, HTML B, JavaScript 105, 5 base64 4t i) 18 1) TR —
IS8 23 B A L IR A 8, IR SS #8315 3 % '3 o JavaScript AR AR BESLAC T4 1R, AR A& 10
ARSI RN A A5 B Sk AR AT H A DU

-

Let's follow this process from start to finish. First, a request is made to the server for several image resources:

IEBATHCL B RERBEIX AN SRR B, AR 1A R 5545 RO LA BB B8

var req = new XMLHttpRequest();
req.open('GET"', 'rollup _images.php', true);
req.onreadystatechange = function() {
if (req.readyState == 4) {
splitlmages(req.responseText);
H
¥

req.send(null);

This is a very simple request. You are asking for data from rollup_images.php, and once you receive it, you

send it to the function splitimages.

XN EH R LG K . /R rollup_images.php ZER & HE, — BHARKENRAIZE S, Sk A0 4 AL

splitimages Ab# .

Next, on the server, the images are read and converted into strings:

T RS AR R IR AT TR O A

// Read the images and convert them into base64 encoded strings.
$images = array('kitten.jpg', 'sunset.jpg', 'baby.jpg");
foreach ($images as $image) {

$image fh = fopen($image, 'r');

$image data = fread($image fh, filesize($image));

fclose($image_fh);

$payloads[] = base64 encode($image data);

yOOREEE: BURXCHIR, BESER)
H
// Roll up those strings into one long string and output it.
$newline = chr(1); // This character won't appear naturally in any base64 string.

echo implode($newline, $payloads);

This piece of PHP code reads three images and converts them into long strings of base64 characters. They are

concatenated using a single character, Unicode character 1, and output back to the client.

IX B PHP AU = ANE B, FR S AT 164 i base64 F-4F 5 o ‘eAT12 18] FH—AN R B 52 4%, UNICODE

(M1, ERGEK, RIS FISE % i .

Once on the client side, the data is processed by the splitimages function:

SRJE BB i, LA B splitlmage BRI AL FE

function splitlmages(imageString) {
var imageData = imageString.split("\u0001");
var imageElement;
for (var i =0, len = imageData.length; i < len; i++) {
imageElement = document.createElement('img");
imageElement.src = 'data:image/jpeg;base64,' + imageData[i];

document.getElementByld('container').appendChild(imageElement);

—

-~

This function takes the concatenated string and splits it up again into three pieces. Each piece is then used to
create an image element, and that image element is inserted into the page. The image is not converted from a
base64 string back to binary data; instead it is passed to the image element using a data: URL and the image/jpeg

mime-type.

I BR ESCRE DR T B A B A o B MBI TR — ARG ooE, R EGoTEBA T . K
BEAIE I base64 Fedfpl b, 1 & A data:URL Jf45 & image/jpeg BEARRAL,

The end result is that three images have been passed to the browser as a single HTTP request. This could be
done with 20 images or 100; the response would be larger, but it would still take only one HTTP request. It can
also be expanded to other types of resources. JavaScript files, CSS files, HTML fragments, and images of many
types can all be combined into one response. Any data type that can be handled as a string by JavaScript can be
sent. Here are functions that will take strings for JavaScript code, CSS styles, and images and convert them into

resources the browser can use:

I AL R fE U HTTP R s S g A N 7 =k B . thrl LB A 20 5KE% 100 5K, W RS04
BOR, (HWIUE I HTTP K. ST DAY e 2 HoAh 2R Y K %8, JavaScript SCFF, CSS 3Cff, HTML
FBL VFZ RN R #AT A IR IR N . AR AT B8 SRS RT 45— A JavaScript Ab B K755 i 4 &
o R BUT TF JavaScript fCRS . CSS FE A #4530 5 2 w] P A W5 98-

function handleImageData(data, mimeType) {
var img = document.createElement('img');
img.src = 'data:' + mimeType + ';base64,' + data;
return img;

H

function handleCss(data) {
var style = document.createElement('style');
style.type = 'text/css';

var node = document.create TextNode(data);

style.appendChild(node);
document.getElementsByTagName r(‘head')[0].appendChild(style);
H
function handleJavaScript(data) {

(data);

As MXHR responses grow larger, it becomes necessary to process each resource as it is received, rather than

waiting for the entire response. This can be done by listening for readyState 3:

H1F MXHR Wi AR SCBORAER, A7 0 ZEAEREAS GEUC R I N 2L B, T AN 55 A 2 i I AR SR e

o X 0] LU L M WT readyState 3 SEH:

var req = new XMLHttpRequest();
var getLatestPacketInterval, lastLength = 0;
req.open('GET', 'rollup_images.php', true);
req.onreadystatechange = readyStateHandler;
req.send(null);
function readyStateHandler {
if (req.readyState === 3 && getLatestPacketInterval === null) {
// Start polling.
getLatestPacketInterval = window.setInterval(function() {
getLatestPacket();
§5 15);
H
if (req.readyState === 4) {
// Stop polling.
clearInterval(getLatestPacketInterval);
// Get the last packet.

getLatestPacket();

H

function getLatestPacket() {
var length = req.responseText.length;
var packet = req.responseText.substring(lastLength, length);
processPacket(packet);

lastLength = length;

—

Once readyState 3 fires for the first time, a timer is started. Every 15 milliseconds, the response is checked for
new data. Each piece of data is then collected until a delimiter character is found, and then everything is processed

as a complete resource.

4 readyState 3 55— RN, JAB) T —ANEN A RERE 15 AR A — 0w AR S P R B . Eils
B R BRI A s, RJE DI A e BN AR

The code required to use MXHR in a robust manner is complex but worth further study. The complete library

can be easily be found online at http://techfoolery.com/mxhr/.

PR)7 U MXHR (AR R ARG D00 SeREmEw 2 0

http://techfoolery.com/mxhr/ .

There are some downsides to using this technique, the biggest being that none of the fetched resources are
cached in the browser. If you fetch a particular CSS file using MXHR and then load it normally on the next page,
it will not be in the cache. This is because the rolled-up resources are transmitted as a long string and then split up
by the JavaScript code. Since there is no way to programmatically inject a file into the browser's cache, none of

the resources fetched in this way will make it there.

AR R ARAT — L i, FErp R R KB 2 DL VR SRAT K BE AN RE RN DT 8 2247 - WIER R4] MXHR
AR AMRFE 1) CSS SUAFARJEAE b — AN UL P IEH N, EAERAT . UGBS/ — KT
FE AL, SRJ5 th JavaScript ARSI H] o I FBCA IMEIRE R SO S AS A0, P LU IR 7
AR BB JCTR A TR TR L

Another downside is that older versions of Internet Explorer don't support readyState 3 or data: URLs.

Internet Explorer 8 does support both of them, but workarounds must still be used for Internet Explorer 6 and 7.

TN SE . 2R Internet Explorer 432 #F readyState 3 5% data: URL. Internet Explorer 8 P42

¥F, 1HYE Internet Explorer 6 Fl1 7 " 02 v vk AR il

Despite these downsides, there are still situations in which MXHR significantly improves overall page

performance:

JUSATIZ LG o, H SRR MXHR 7588 254 v 7 44 0 1 ¥ v R

* Pages that contain a lot of resources that aren't used elsewhere on the site (and thus don't need to be cached),

especially images

SV AT AN I BIBEIR (FTUANR 22247) , TUHEE A

» Sites that already use a unique rolled-up JavaScript or CSS file on each page to reduce HTTP requests; because

it is unique to each page, it's never read from cache unless that particular page is reloaded

W 35 R BEA BT A T TS 4T ALY JavaScript % CSS U LA /> HTTP i3k, R e AT AN 1T
TSR BRI —, PFTUATRZENGEAE TS, BRAEE s N € T

Because HTTP requests are one of the most extreme bottlenecks in Ajax, reducing the number needed has a
large effect on overall page performance. This is especially true when you are able to convert 100 image requests
into a single multipart XHR request. Ad hoc testing with large numbers of images across modern browsers has
shown this technique to be 4 to 10 times faster than making individual requests. Run these tests for yourself at

http://techfoolery.com/mxhr/.

H1F HTTP 153K 2 Ajax *Eeom RIse —, g FaG sRECR AN TP RE A IR . JEIL 2
PR 100 AN i SREFAL S —> MXHR 153K o Ad hoe fEHUCH o as LI 7 KR R, HLgUR B R

AR LB T 4 210 5. R0l LA Cas 7 IX MR http:/techfoolery.com/mxhr/

Sending Data & i%%#%

There are times when you don't care about retrieving data, and instead only want to send it to the server. You
could be sending off nonpersonal information about a user to be analyzed later, or you could capture all script
errors that occur and send the details about them to the server for logging and alerting. When data only needs to be

sent to the server, there are two techniques that are widely used: XHR and beacons.

RSO, T P BB R A RS % T LU IEH P R AERA A {5 B A H S 28T, B
BRI A R IR G A DN 1T R IE AL RS S AT IC AR o M8 X R RIE S R4S 20, A P Fd
J oz N HFEAR: XHR AT b

XMLHttpRequest

Though primarily used for requesting data from the server, XHR can also be used to send data back. Data can
be sent back as GET or POST, as well as in any number of HTTP headers. This gives you an enormous amount of
flexibility. XHR is especially useful when the amount of data you are sending back exceeds the maximum URL

length in a browser. In that situation, you can send the data back as a POST:

HAR XHR FZH T MRS 28 3R B , et mT LA SR 2k & [m] . s vT LA GET 5 POST 77 Uk Al
PLNAT ZHCE) HTTP 5 Bk e IR IR RIGEYE o 2%) R 45w A 0] Aty 5 8) B 2 1 ek URL
KERT XHR Fl A H . XFEL T, /] LU POST Jr =k [R5 «

var url = '/data.php';
var params = |
'id=934875',
"limit=20'
I;
var req = new XMLHttpRequest();
req.onerror = function() {
// Error.
¥
req.onreadystatechange = function() {
if (req.readyState == 4) {

// Success.

H
¥
req.open('POST', url, true);
req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
req.setRequestHeader('Content-Length', params.length);

req.send(params.join('&"));

As you can see in this example, we do nothing if the post fails. This is usually fine when XHR is used to

capture broad user statistics, but if it's crucial that the data makes it to the server, you can add code to retry on

failure:

IEARAER AT R B 2, AR RIS T BA M A A 4 3RATH XHR iR SR Sevh 5 B
PMOEHBAT AT, (HE, WRAGRBINSS & (e B O H B, VR LU AR AE RO

function xhrPost(url, params, callback) {
var req = new XMLHttpRequest();
req.onerror = function() {
setTimeout(function() {
xhrPost(url, params, callback);
}, 1000);
¥
req.onreadystatechange = function() {
if (req.readyState == 4) {
if (callback && typeof callback === "function') {

callback();

}
H
¥
req.open('POST", url, true);
req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');

req.setRequestHeader('Content-Length', params.length);

req.send(params.join('&'));

-~

When using XHR to send data back to the server, it is faster to use GET. This is because, for small amounts of
data, a GET request is sent to the server in a single packet. A POST, on the other hand, is sent in a minimum of
two packets, one for the headers and another for the POST body. A POST is better suited to sending large
amounts of data to the server, both because the extra packet won't matter as much and because of Internet

Explorer's URL length limit, which makes long GET requests impossible.

A XHR R8s A RS A i, & HeAl] GET ko X R D Bl =, 1) il 9% 4 ik — A
GET WK Z Iy Fl— ANl 8. 59— 5T, —A> POST &/ REHAHI, —MHTERL. 5—
NI POST fA. POST SEI&G4 T 1) R 45 4 Ak K BEH, BIDRA & AN G Bt it B, SRy
Internet Explorer [URL 5 fR i, e A g K1 GET k.

Beacons {J#%

This technique is very similar to dynamic script tag insertion. JavaScript is used to create a new Image object,
with the src set to the URL of a script on your server. This URL contains the data we want to send back in the

GET format of key-value pairs. Note that no img element has to be created or inserted into the DOM.

PR B S AR B AT A AR 3 2R JavaScript T8I ASHT 10 Image X5, K sre BB A 554 L
—/MEASCAR URL. 36 URL A5 FATH S0 GET ks A AL IR SR B o 7R A B4 img o
5K E AT A E) DOM i

var url = '/status_tracker.php';
var params = [

'step=2',

'time=1248027314'
I;

(new Image()).src = url + '?' + params.join('&');

The server takes this data and stores it; it doesn't have to send anything back to the client, since the image isn't
actually displayed. This is the most efficient way to send information back to the server. There is very little

overhead, and server-side errors don't affect the client side at all.

Hi 55 e A LB O DR A7 R R, AN 1) 2 7 Sl [l 4, DRI BT SERR T EIR B7s o X2 K4 B A]
R 555 Wi RO e TR, 10 AR R 55 2% i B AR AR AN 22 S0 25) i o

The simplicity of image beacons also means that you are restricted in what you can do. You can't send POST
data, so you are limited to a fairly small number of characters before you reach the maximum allowed URL length.
You can receive data back, but in very limited ways. It's possible to listen for the Image object's load event,
which will tell you if the server successfully received the data. You can also check the width and height of the
image that the server returned (if an image was returned) and use those numbers to inform you about the server's

state. For instance, a width of 1 could be "success" and 2 could be "try again."

{1 B PR B AT B RS VR PT REALIK 52 2R ARANBEAIL POST Hiedli, BT LAAR4E URL A EBRBIAE A
MZ/N AR o ARn] U AT BRI i BOR [P . T LIS WT Tmage X4 (1) load 344, g R LA
T YRR MR 55 45 S 1 77 BRI T K o i iy LUK, 2 55 ke [1) 0 98 A v P Cn SRR [m] 1 — 5K B)
I XL E I AR IR S5 A (RPARZS o B, FEPEON 1 Rl 2 s dik”.

If you don't need to return data in your response, you should send a response code of 204 No Content and no

message body. This will prevent the client from waiting for a message body that will never come:

DR ARAN T 0 PE i N IR [R5, AR 2 %381 204 No Content Wiy NATAS, JEH RIESC. EREEL
1125 i AR A A AR I AN 2 BRI T B A

var url = '/status_tracker.php';
var params = [
'step=2',
'time=1248027314'
I;
var beacon = new Image();

beacon.src = url +'?' + params.join('&');

beacon.onload = function() {
if (this.width ==1) {
// Success.
H
else if (this.width == 2) {
// Failure; create another beacon and try again.
}
I8

beacon.onerror = function() {

// Error; wait a bit, then create another beacon and try again.

Beacons are the fastest and most efficient way to send data back to the server. The server doesn't have to send
back any response body at all, so you don't have to worry about downloading data to the client. The only
downside is that it you are limited in the type of responses you can receive. If you need to pass large amounts of
data back to the client, use XHR. If you only care about sending data to the server (with possibly a very simple

response), use image beacons.

KT AR 17 AR 55 45 RIS Bt de R AN B A1 2K T o AR S5 s IRA AN EER [BUE AT Wiy LIS, B LR AN LA FH
B A o P (R R B (R Y SRR S R o AR R B g e il RO R, AT
M XHR. WERAR R GG 2 SOX B S5 s CPTREFT ZEM A IR), B A4 F R T AR

Data Formats Z#E#& =\

When considering data transmission techniques, you must take into account several factors: feature set,
compatibility, performance, and direction (to or from the server). When considering data formats, the only scale

you need for comparison is speed.

FE25 BB BRI, AR5 [EIXEE N ZR . Thedk, Meath, TERE, U7 CRgyiiss e sl M
RO o A SRR I, I R R R R il

There isn't one data format that will always be better than the others. Depending on what data is being
transferred and its intended use on the page, one might be faster to download, while another might be faster to
parse. In this section, we create a widget for searching among users and implement it using each of the four major
categories of data formats. This will require us to format a list of users on the server, pass it back to the browser,
parse that list into a native JavaScript data structure, and search it for a given string. Each of the data formats will
be compared based on the file size of the list, the speed of parsing it, and the ease with which it's formed on the

SCrver.

BEA WM SN AR 2 LU ARG OB 4o R AR AT A8« 1T 0T A4 H i, R T RE
B, G P ST REp bR AEAT TR, BRATTEUEE 7 AN DN R S SO DR
TR NS o R ERBATAE R S5 2 i A% AL — DI B, R iR 4530 s, R 5 AR AT A
JavaScript £tk a0, FHRZRRHE N PR H o RERPECEAR SOR USRI SO RN, BT, IR 5545
RS EATRME S R

XML

When Ajax first became popular, XML was the data format of choice. It had many things going for it: extreme
interoperability (with excellent support on both the server side and the client side), strict formatting, and easy
validation. JSON hadn't been formalized yet as an interchange format, and almost every language used on servers

had a library available for working with XML.

) Ajax JHGARFFATEAR EIESF T XML Bt AREZ FfE Mser e mm . Bom i stk sy
an i AR P AR BENE AP SR kIO, BT RAE. ORI JSON & BCAH IE XA W ac kg =, LT
FITAT IR AR 55 A i V8 5 AT A1 XML IR %2

Here is an example of our list of users encoded as XML:

X HLE A XML G f5 K H] 7 51R 5]

<?xml version="1.0" encoding="UTF-8'?>
<users total="4">

<user id="1">

<username>alice</username>
<realname>Alice Smith</realname>
<email>alice@alicesmith.com</email>

</user>

<user id="2">
<username>bob</username>
<realname>Bob Jones</realname>
<email>bob@bobjones.com</email>

</user>

<user id="3">
<username>carol</username>
<realname>Carol Williams</realname>
<email>carol@carolwilliams.com</email>

</user>

<user id="4">
<username>dave</username>
<realname>Dave Johnson</realname>
<email>dave@davejohnson.com</email>

</user>

</users>

Compared to other formats, XML is extremely verbose. Each discrete piece of data requires a lot of structure,
and the ratio of data to structure is extremely low. XML also has a slightly ambiguous syntax. When encoding a
data structure into XML, do you make object parameters into attributes of the object element or independent child
elements? Do you make long, descriptive tag names, or short ones that are efficient but indecipherable? Parsing
this syntax is equally ambiguous, and you must know the layout of an XML response ahead of time to be able to

make sense of it.

B AR A LE, XML RO BEAS B A W a2 Ak, P DU 28 (1 L A H A
1M1 H XML i SO oo . U8R g5 Mgt XML 2)5, RN R SE0E S oc RN E kT, &

FETRAEARST IR 5 TR 2 ARZEAL (K iy 44 0 /N i R AE AN 1 44 72 TR AT R 5 TR AR 20
JERNTE XML Wi AR SCHIATJ AR JA A RESRR B IS o

In general, parsing XML requires a great deal of effort on the part of the JavaScript programmer. Aside from
knowing the particulars of the structure ahead of time, you must also know exactly how to pull apart that structure
and painstakingly reassemble it into a JavaScript object. This is far from an easy or automatic process, unlike the

other three data formats.

—BHOL T, Al AT XML 25] JavaScript #2157 ST — R . BR T EERATRIIE AN S5 25k, AR
A RS DT BRI TE W] g8 O IS 5 R IR RO HIeRE EAT TN JavaSeript XF 5 iXig AR 53 HAGE H 358
J8o AR =Rl H i A% SO

Here is an example of how to parse this particular XML response into an object:

N AR E XML R SCRFATT 20 B 5

function parseXML(responseXML) {
var users = [];
var userNodes = responseXML.getElementsByTagName r('users');
var node, usernameNodes, usernameNode, username,
realnameNodes, realnameNode, realname,
emailNodes, emailNode, email;
for (var 1 =0, len = userNodes.length; 1 < len; i++) {
node = userNodes[i];
username = realname = email ="
usernameNodes = node.getElementsByTagName r(‘username');
if (usernameNodes && usernameNodes[0]) {
usernameNode = usernameNodes[0];
username = (usernameNodes. firstChild) ?
usernameNodes.firstChild.nodeValue : ";

}

realnameNodes = node.getElementsByTagName r('realname’');

if (realnameNodes && realnameNodes[0]) {
realnameNode = realnameNodes[0];
realname = (realnameNodes.firstChild) ?
realnameNodes.firstChild.nodeValue : ";
H
emailNodes = node.getElementsByTagName r('email’);
if (emailNodes && emailNodes[0]) {
emailNode = emailNodes[0];
email = (emailNodes.firstChild) ?
emailNodes.firstChild.nodeValue : ";
H
users[i] = {
id: node.getAttribute('id"),
username: username,
realname: realname,
email: email
HE
H

return users;

As you can see, it requires checking each tag to ensure that it exists before reading its value. It is heavily

dependent on the structure of the XML.

IEWRITE 20, BT, EfF 2 AR MR UOME EAF . XA KRR EAKIg T XML 4,
Fo

A more efficient approach would be to encode each of the values as an attribute of the <user> tag. This results
in a smaller file size for the same amount of data. Here is an example of the user list with the values encoded as

attributes:

— AR T SO AGREME AR AR <user>BR2E MRk o B AR [R] i SO ROT J18E /I o I AME 7 1
MBI, K RCEAE AR S R

<?xml version="1.0" encoding="UTF-8'?>
<users total="4">

<user id="1-1d001" username="alice" realname="Alice Smith" email="alice@alicesmith.com" />

<user 1d="2-id001" username="bob" realname="Bob Jones" email="bob@bobjones.com" />

<user 1d="3-1d001" username="carol" realname="Carol Williams" email="carol@carolwilliams.com" />
<user 1d="4-1d001" username="dave" realname="Dave Johnson" email="dave@davejohnson.com" />

</users>

Parsing this simplified XML response is significantly easier:

fiE i S TR A . XML 1 3 4R SO B 44 %2

function parseXML(responseXML) {
var users = [];
var userNodes = responseXML.getElementsByTagName r('users');
for (var i =0, len = userNodes.length; 1 < len; i++) {
users[i] = {
id: userNodes[i].getAttribute('id"),
username: userNodes[i].getAttribute('username'),
realname: userNodes[i].getAttribute('realname'),
email: userNodes[i].getAttribute('email’)
13
H

return users;

XPath

Though it is beyond the scope of this chapter, XPath can be much faster than getElementsByTagName when
parsing an XML document. The caveat is that it is not universally supported, so you must also write fallback code
using the older style of DOM traversal. At this time, DOM Level 3 XPath has been implemented by Firefox,

Safari, Chrome, and Opera. Internet Explorer 8 has a similar but slightly less advanced interface.

BAREEH TATE NG, (0 XPath {Ef#HT XML SR EE getElementsByTagName tRTF25 . 5 %2
TR, EIFARIGRN 2 3R, PrLARanZifi H 22 XS 1) DOM 3 [77 4 5 4% ARG . 314, DOM
2 3 (1) XPath L& 4l R Wi 28 SEE: Firefox, Safari, Chrome, #I Opera. Internet Explorer 8 f1—/~

LRI AR e RE R 1

Response sizes and parse times Wi 4R 32K/ AT I [A]

Let's take a look at the performance numbers for XML in the following table.

HFRATRE —F TR XML PEReEds:

Format Size Download time Parsetime Total load time
Verbose XML~ 582,960bytes 9994 ms 3431 ms 1342.5 ms
Simple XML~ 437,960bytes 4751 ms 83.1ms 558.2 ms

As you can see, using favoring attributes over child tags leads to a smaller file size and a significantly faster
parse time. This is mostly due to the fact that you don't have to walk the DOM on the XML structure as much, and

can instead simply read attributes.

IEWRPTE 20, S ARZEAR L, AR R SO SN, Rl A2 b i) AR o L S AR R
JEEFETIXAEM S IRANTEAE XML 454 5 DOM A2 10, i U] F it e s 7k

Should you consider using XML? Given its prevalence in public APIs, you often have no choice. If the data is
only available in XML, you roll up your sleeves and write code to parse it. But if there is any other format
available, prefer that instead. The performance numbers you see here for verbose XML are extremely slow
compared to more advanced techniques. For browsers that support it, XPath would improve the parse time, but at
the cost of writing and maintaining three separate code paths (one for browsers that support DOM Level 3 XPath,
one for Internet Explorer 8, and one for all other browsers). The simple XML format compares more favorably,

but is still an order of magnitude slower than the fastest format. XML has no place in high-performance Ajax.

PRIEEH S XML? 255975 APT WIbiiAT A, IREH BTk . R % A7 XML #% Ul 1,
TS 2R A 5 AR AR AT BN o EL i R JeAbAs U, B4 3 AR o ARTEIX LA 21 (FhRiE XML
(K R M 5 S SE R AR L, AR T o SRS s SRS, XPath AT ARATIN], (HARH 2
%05 IR = ARG % C SR DOM 2859 3 1) XPath (304 2% 5 —AN, A4 Internet Explorer 8 55—,
A HARF RS A o it XML AR, BB S PR 2GR 218 — MR 7R mtERE Ajax
AT XML AT .

JSON

Formalized and popularized by Douglas Crockford, JSON is a lightweight and easy-to-parse data format

written using JavaScript object and array literal syntax. Here is an example of the user list written in JSON:

11T Douglas Crockford) & B 5], JSON J&— /N w2 df o T 8 k% 50, ‘B %M JavaScript
X G FNE T VA 'S . N olE] JSON B H P A&

n.n nn

"id":1, "username":"alice", "realname": "Alice Smith", "email":"alice@alicesmith.com"},

"nn

{"id":2, "username":"bob", "realname": "Bob Jones", "email":"bob@bobjones.com"},

n.n

"id":3, "username":"carol", "realname": "Carol Williams","email":"carol@carolwilliams.com"},

nn nn

{"id":4, "username":"dave", "realname": "Dave Johnson", "email":"dave@davejohnson.com"}

The users are represented as objects, and the list of users is an array, just as any other array or object would be
written out in JavaScript. This means that when evaled or wrapped in a callback function, JSON data is executable

JavaScript code. Parsing a string of JSON in JavaScript is as easy as using ():

TP o g — AR5, P AR — N4, 5 JavaScript FP HA B B0 % (0 SV). X R
WP E BB AN R A2, JSON 4k vl FR 4 REWS 21T 1) JavaScript 1865 . 7E JavaScript HfEAT JSON
A] A AT O

function parseJSON(responseText) {

return ('(' + responseText +')');

Just as with XML, it is possible to distill this format into a simpler version. In this case, we can replace the

attribute names with shortened (though less readable) versions:

IET XML ARFE, e Rl LR S S ARCAS . KRGO, FATTRDRE 4 74kl OVl Bk A2
ZE)

{"i": 1, "u": "alice", "r": "Alice Smith", "e": "alice@alicesmith.com" },
{"1":2,"u": "bob", "r": "Bob Jones", "e": "bob@bobjones.com" },

{"i": 3, "u": "carol", "r": "Carol Williams", "e": "carol@carolwilliams.com" },

{"1": 4, "u": "dave", "r": "Dave Johnson", "e¢": "dave@davejohnson.com" }

This gives us the same data with less structure and fewer bytes overall to transmit to the browser. We can even
take it a step further and remove the attribute names completely. This format is even less readable than the other

two and is much more brittle, but the file size is much smaller: almost half the size of the verbose JSON format.

EOREAH] B LUSE /D (R S5 R R /N 55 RO AR A SR s . SEE—20, AT T Ess e L fm it 44 .
LA R A L, XA ARt 22, (AR, SO IGTARE /N KA HATARE TSON A% 51K
giiéo

[1, "alice", "Alice Smith", "alice@alicesmith.com"],
[2, "bob", "Bob Jones", "bob@bobjones.com" |,

[3, "carol", "Carol Williams", "carol@carolwilliams.com" |,

[4, "dave", "Dave Johnson", "dave@davejohnson.com" |

Successful parsing requires that the order of the data must be maintained. That being said, it is trivial to convert

this format into one that maintains the same attribute names as the first JSON format:

AT I R A AR T RS B o e U, e AEREAT RS U I DA R F5 A 58—~ TSON A% xU—HFE 1 &
P44

function parseJSON(responseText) {
var users = [];
var usersArray = ('(' + responseText +')");
for (var i = 0, len = usersArray.length; i <len; i++) {
users[i] = {
id: usersArray[i][0],
username: usersArray[i][1],
realname: usersArray[i][2],
email: usersArray[i][3]
15
H

return users;

In this example, we use () to convert the string into a native JavaScript array. That array of arrays is then
converted into an array of objects. Essentially, you are trading a smaller file size and faster () time for a more
complicated parse function. The following table lists the performance numbers for the three JSON formats,

transferred using XHR.

FERXAB 7o, FAMEI QR 747 Hp el — DA HE JavaScript 2041 AR5 fR1G & FAH S — 0 R4,
AR, AR AN R 2R (KA BRSO T BN SO R RTE R (FIOIN] . R 2871 Hi3X =T TSON 4%
XM PERERSE, L XHR {4

Format Size Downloadtime Parsetime Total load time

Verbose JSON 487,895 bytes 527.7ms 26.7 ms 5544 ms
Simple JSON 392,895bytes 498.7 ms 29.0ms 527.7ms
Array JSON 292,895 bytes 3054 ms 18.6 ms 3IM.0ms

JSON formed using arrays wins every category, with the smallest file size, the fastest average download time,
and the fastest average parse time. Despite the fact that the parse function has to iterate through all 5,000 entries in

the list, it is still more than 30% faster to parse.

AT ISON FERE—Irp 383k, & SO RS dls s NG, PN) ke . RS R BT R 2L
AN 352 BT 5'000 DTG, B ER T 30%.

JSON-P

The fact that JSON can be executed natively has several important performance implications. When XHR is
used, JSON data is returned as a string. This string is then evaluated using () to convert it into a native object.
However, when dynamic script tag insertion is used, JSON data is treated as just another JavaScript file and
executed as native code. In order to accomplish this, the data must be wrapped in a callback function. This is

known as "JSON with padding," or JSON-P. Here is our user list formatted as JSON-P:

F52 1 JSON A AT AT J LA 2L PERE I . 448 H] XHR I JSON Hdfa/E 8 — AN 47 s ik [l
AR OB DA Z o AR, A8 ShA AT AN, JSON Bl gt ol 55—
JavaScript U AR A MBS IAT o I AENIZ— i, Bl 0 500 B e [0 e 2 o X T I K “TSON
BAFE7E JSON-P. 2 FA I JSON-P ¥ A5 5 (1] 7 413 -

parseJSON([

n.n nn

{"id":1, "username":"alice", "realname":"Alice Smith", "email":"alice@alicesmith.com"},

{"1d":2, "username":"bob", "realname":"Bob Jones", "email":"bob@bobjones.com"},

n.n non

{"id":3, "username":"carol", "realname":"Carol Williams", "email":"carol@carolwilliams.com"},

nn "nn

{"1d":4, "username":"dave", "realname":"Dave Johnson", "email":"dave@davejohnson.com"}

Ds

JSON-P adds a small amount to the file size with the callback wrapper, but such an increase is insignificant
compared to the improved parse times. Since the data is treated as native JavaScript, it is parsed at native

JavaScript speeds. Here are the same three JSON formats transmitted as JSON-P.

JSON-P K| A]] G 2 1) Jist DRI A8 n 1 S RST, AH5S LA A i 1 5 A DI s B8 A 218 . 1
FTHAEAE g A K JavaScript AbFE, & PIENTIH G A JavaScript —FFPRE. R [T 4& JSON-P &% —Ff' ISON
F s R E (1] «

Format Size Downloadtime Parsetime Total load time
Verbose JSON-P 487,913 bytes 598.2ms 0.0 ms 508.2 ms
Simple JSON-P 392913 bytes 454.0ms 31 ms 457.1 ms
Array JSON-P 29291 2bytes 316.0ms 34 ms 3194 ms

File sizes and download times are almost identical to the XHR tests, but parse times are almost 10 times faster.
The parse time for verbose JSON-P is zero, since no parsing is needed; it is already in a native format. The same
is true for simple JSON-P and array JSON-P, but each had to be iterated through to convert it to the format that

verbose JSON-P gives you naturally.

SCAER/INRIR 2 (] 5 XHR PIRAIEAAH], 1 AT IR L TP T 10 iz o #5fE JSON-P (1@ BT sS4 0,
U MRA ARG RN, & CE AT . Wik JSON-P F1%U4] JSON-P 2 ik, HRAapph R 2
3 bR AE TSON-P B REAA IR IRl X

The fastest JSON format is JSON-P formed using arrays. Although this is only slightly faster than JSON
transmitted using XHR, that difference increases as the size of the list grows. If you are working on a project that

requires a list with 10,000 or 100,000 elements in it, favor JSON-P over JSON.

I TSON A A& Al AL JSON-P #5308, HLARIX H LA] XHR 17 JSON B&HR, (H &I Fh 22 57 Bt
5 AN RS IR BE T3S R o an SRR B R 30 H 75 22— 10'000 B 100'000 4™ 57044 ¥ 4114, 354 JISON-P
tt JSON 4 1R £,

There is one reason to avoid using JSON-P that has nothing to do with performance: since JSON-P must be
executable JavaScript, it can be called by anyone and included in any website using dynamic script tag insertion.

JSON, on the other hand, is not valid JavaScript until it is evaled, and can only be fetched as a string using XHR.

Do not encode any sensitive data in JSON-P, because you cannot ensure that it will remain private, even with

random URLSs or cookies.

A — A5 PR BRI I IR i PRI 238 40 {1 JSON-P: [K1 24 JSON-P A2 i $hAT 1) JavaScript, ‘& IHZIZS
TR A KR 2530 N AR TTALEATAT 3 R AT N o S — A, TSON 1EIs4T 2 B A 2 2%)
JavaScript, ffH XHR I FUE 8 VE T4 B 3R AN BRAT] U Es i >l JSON-P, KA VR TGV &

ER T EEREE L, S AL URL 5 cookie.

Should you use JSON? R iZA#EH JSON K ?

JSON has several advantages when compared to XML. It is a much smaller format, with less of the overall
response size being used as structure and more as data. This is especially true when the data contains arrays rather
than objects. JSON is extremely interoperable, with encoding and decoding libraries available for most server-side
languages. It is trivial to parse on the client side, allowing you to spend more time writing code to actually do
something with the data. And, most importantly for web developers, it is one of the best performing formats, both
because it is relatively small over the wire and because it can be parsed so quickly. JSON is a cornerstone of

high-performance Ajax, especially when used with dynamic script tag insertion.

55 XML #ILE JSON T 2 si e IXFg A/MI 2, FER M NAR SO, S5H A AT e 580, K by |
M2 Rl e doh S B AR G o JSON 55K 2 Bl g5 dsdim v 5 (1 g Al i 128 2 18] 47 25 AR 1) T
BAErE. EAER) E AT ARG LIS, AR LUK 5 22 5 AN) I TRl e FA s A 2 B o X BT
KH RV LN, CRRIEI %2 —, BRI ELALRAIR BN, WD T+ 2tk JSON
s PERE Ajax (347, FE 0B AR IARRZE A .

HTML

Often the data you are requesting will be turned into HTML for display on the page. Converting a large data
structure into simple HTML can be done relatively quickly in JavaScript, but it can be done much faster on the
server. One technique to consider is forming all of the HTML on the server and then passing it intact to the client;
the JavaScript can then simply drop it in place with innerHTML. Here is an example of the user list encoded as

HTML.:

TR BT SR 20 DL HTML 3R (A9 /R 76 U1 1. JavaScript G848 L B UK — AN KB s 45 M 10 A
fAT L) HTML, fH 2 IR 45 s 58 i mIRE TAR M. —FhEoR T et 7r Ik 55 A i) L S HTML SR 5 Lk ah
7 ;i , JavaScript FUE R B R S AR S ON innerHTML. R [2 Fl HTML 4 fish])7 51 22 1451 -

<ul class="users">

<li class="user" id="1-id002">

alice

Alice Smith

alice@alicesmith.com

<li class="user" id="2-id002">

bob

Bob Jones

bob@bobjones.com

<li class="user" id="3-id002">

carol

Carol Williams

carol@carolwilliams.com

<li class="user" id="4-id002">

dave

Dave Johnson

dave@davejohnson.com

The problem with this technique is that HTML is a verbose data format, more so even than XML. On top of the
data itself, you could have nested HTML tags, each with IDs, classes, and other attributes. It's possible to have the

HTML formatting take up more space than the actual data, though that can be mitigated by using as few tags and

attributes as possible. Because of this, you should use this technique only when the client-side CPU is more

limited than bandwidth.

PEHOR R REAE T, HTML S —FHREgl i i o0, b XML SN0 E8 A S i idh 2, Al ik
B HTML 7%, SENERAT ID, 8, FIHARJEE. HTML A% T fe bt scbr i & I SE 2 s (a), 5
AT ISR D AR AT B PSR IX 1)l TEDRUDAIZAN AL, AR A 2%) m CPU ety 5 B 52 BRI i
BB

On one extreme, you have a format that consists of the smallest amount of structure required to parse the data
on the client side, such as JSON. This format is extremely quick to download to the client machine; however, it
takes a lot of CPU time to convert this format into HTML to display on the page. A lot of string operations are

required, which are one of the slowest things you can do in JavaScript.

MRS DL, ARAT RS NS R D BRI AR, R AR AT R, B TSON. JX % X
NEEF AR R, R E IR E CPU IN R4 R HTML PR 7R 7E BT E o X T 2R 2 747 #4E

745 R A 2 JavaScript B8 ER1EZ —.

On the other extreme, you have HTML created on the server. This format is much larger over the wire and

takes longer to download, but once it's downloaded, displaying it on the page requires a single operation:

TR UL, UREMRSS A% LI HTML. X R LA mEd 7oK, MR, H B R

5, Al AR LUR s A v f

document.getElementByld('data-container').innerHTML = req.responseText;

The following table shows the performance numbers for the user list encoded using HTML. Keep in mind the
main different between this format and all others: "parsing” in this case refers to the action of inserting the HTML

in the DOM. Also, HTML cannot be easily or quickly iterated through, unlike a native JavaScript array.

R SR T HTML 4% H 7 510 v Bt . e (X Aok 305 Fopb LRIg X 22000 <Al b
FERXFIE S N HRF 2K HTML 46\ DOM [{#4E. b4k, HTML AREIGAHY JavaScript 220 A% 2y ik
Mo AT IRAR A

Format Size Download time Parsetime Total load time
HTML 1,063 416bytes 2731 ms 1214 ms3 394.5 ms

As you can see, HTML is significantly larger over the wire, and also takes a long time to parse. This is because
the single operation to insert the HTML into the DOM is deceptively simple; despite the fact that it is a single line
of code, it still takes a significant amount of time to load that much data into a page. These performance numbers
do deviate slightly from the others, in that the end result is not an array of data, but instead HTML elements

displayed on a page. Regardless, they still illustrate the fact that HTML, as a data format, is slow and bloated.

IEWRPTE 2K, HTML A5 W 2 C, M ZHKI R AR PO HTML 46 A %] DOM [
o BAEE DR R, REE R AT, A R T) TN AR 2 Bt . 5 AR AT P S g
R A AT R I 22, e AU RAVZ RS, 152 WA ULk B HTML Jos. Joiginf, e
/st HTML (AN Ao Bdlans o, e g tem FLE .

Custom Formatting H & X

The ideal data format is one that includes just enough structure to allow you to separate individual fields from

each other. You can easily make such a format by simply concatenating your data with a separator character:

I BRAR I Bt SR L B 5, AEARAENS 20t tH RS 7- B UkmT L & S0P U Ry it

AR R E S K

Jacob;Michael;Joshua;Matthew; Andrew;Christopher;Joseph;Daniel;Nicholas;Ethan; William; Anthony;Ryan;Davi

d;Tyler;John

These separators essentially create an array of data, similar to a comma-separated list. Through the use of
different separators, you can create multidimensional arrays. Here is our user list encoded as a character-delimited

custom format:

R RATIEA EAIE T — AL, RTINS BRI IR . B A FER 2 BERT, AR
QI YR . IX B A R SR 745 73 B 7 A IE IR P 4

l:alice:Alice Smith:alice@alicesmith.com;

2:bob:Bob Jones:bob@bobjones.com;

3:carol:Carol Williams:carol@carolwilliams.com;

4.dave:Dave Johnson:dave@davejohnson.com

This type of format is extremely terse and offers a very high data-to-structure ratio (significantly higher than
any other format, excluding plain text). Custom formats are quick to download over the wire, and they are fast and
easy to parse; you simply call split() on the string, using your separator as the argument. More complex custom
formats with multiple separators require loops to split all the data (but keep in mind that these loops are extremely
fast in JavaScript). split() is one of the fastest string operations, and can typically handle separator-delimited lists

of 10,000+ elements in a matter of milliseconds. Here is an example of how to parse the preceding format:

e L eV | B TR (L1 e W 1 = A N ST T U9 NI & € e = AR A e P = e & (SN =
W, ST, TR AT SR I splitOFF 2 B A D S8tk ARIRT . SRR B SO U AT 2 F0)
BRTF, 75 EACARIA i P A R (E2IE 0T, 75 JavaScript HX SEAEH 2 AEH R o split() /2 dm R
TR —, TR DR A B A T 101000 AN TCER I BRAT B H . R4
iR L SR 5

function parseCustomFormat(responseText) {
var users = [];
var usersEncoded = responseText.split(';");
var userArray;
for (var 1 =0, len = usersEncoded.length; i < len; i++) {
userArray = usersEncoded[1].split(":");
users[i] = {
id: userArray[0],
username: userArray[1],
realname: userArray[2],
email: userArray[3]
}3
H

return users;

-

When creating you own custom format, one of the most important decisions is what to use as the separators.
Ideally, they should each be a single character, and they should not be found naturally in your data. Low-number
ASCII characters work well and are easy to represent in most server-side languages. For example, here is how you

would use ASCII characters in PHP:

MR B SRS U, I T B P A R AR B . BARR LT, e N e AN, A
ANBEAAETRIEAE 2 o ASCIT 4578 AT I 1 LA PR R 2 20 25 48 o 1 5 P RERS 15 LA H2%
S5, #lhn, FiyHEA W e PHP F4d] ASCII 15

function build_format_custom(Susers) {
$row_delimiter = chr(1); // \u0001 in JavaScript.
$field delimiter = chr(2); // \u0002 in JavaScript.
$output = array();
foreach (Susers as $user) {
$fields = array($user['id'], Suser['username'], $user|'realname'], $Suser['email']);
Soutput[] = implode($field delimiter, $ficlds);

}

return implode($row_delimiter, $output);

These control characters are represented in JavaScript using Unicode notation (e.g., \u0001). The split()
function can take either a string or a regular expression as an argument. If you expect to have empty fields in your
data, then use a string; if the delimiter is passed as a regular expression, split() in IE ignores the second delimiter

when two are right next to each other. The two argument types are equivalent in other browsers.

XL FAFLE JavaScript H§H Unicode #5id (1, \w0001) FK7x. split()eki 0] LA 77 Hf 50 1E
Wk XS WRARA BHEE P AR 7B, AT TR s W BR A — N ENREL, 1B
) split()REBEI ARZE P AN 73 B AT (035 AN B AT X P A 2 B A LA e 2% 554 .

// Regular expression delimiter.

var rows = req.responseText.split(/Au0001/);

// String delimiter (safer).

var rows = req.responseText.split("\u0001");

Here are the performance numbers for a character delimited custom format, using both XHR and dynamic

script tag insertion:

KHE AT B B E SR R RERE , fEH] XHR MBS IAPR 2N«

Format Size Downloadtime Parsetime Total load time
Custom Format (XHR) 222892 bytes 63.1ms 14.5ms T7.6ms
Custom Format (script insertion) 222,912 bytes 66.3 ms 11.7 ms 78.0 ms

Either XHR or dynamic script tag insertion can be used with this format. Since the response is parsed as a
string in both cases, there is no real difference in performance. For very large datasets, it's hands down the fastest
format, beating out even natively executed JSON in parse speed and overall load time. This format makes it

feasible to send huge amounts of data to the client side in a very short amount of time.

XHR RSN A AR EE NH T LA AR e PR DL T MR 74 R, AETERE BT SEB EIK
Z5t. AR KSR, e m A dt o, FE AR DIFE MR SR 2 8] b A LR AT 1
JSON. F s 31 5 7 g A 06 K ol L AR A R 1)

Data Format Conclusions #3EA& = a4

Favor lightweight formats in general; the best are JSON and a character-delimited custom format. If the data

set is large and parse time becomes an issue, use one of these two techniques:

S FRIOR AR R 0 A% s, et 2 TSON A3 3 B 1) 1 SORS 2o A SRASH R SRAR K B A A v)
JR L, R A X PR 52—

* JSON-P data, fetched using dynamic script tag insertion. This treats the data as executable JavaScript, not a
string, and allows for extremely fast parsing. This can be used across domains, but shouldn't be used with

sensitive data.

JSON-P %4fe, PN IAKRZEHE NEIREL . 0 B AT 84T 1 JavaScript AN A& -4 5, AT i
Bt o e RENEESAE T, (H AN B M BB E I

* A character-delimited custom format, fetched using either XHR or dynamic script tag insertion and parsed using

split(). This technique parses extremely large datasets slightly faster than the JSON-P technique, and generally has

a smaller file size.

FAE BRI B g X%, A XHR sl a8 IAAR IR A BRI,] splitOffdT o IEHORLEMAT AR
KEHREEIS . JSON-P HARME PR, 1y FLIE H SCAF R BN

The following table and Figure 7-1 show all of the performance numbers again (in order from slowest to
fastest), so that you can compare each of the formats in one place. HTML is excluded, since it isn't directly

comparable to the other formats.

R 71 FRR S T A AN R R IR BIPIIUY) , ARA] AR B AR S S U AR
3o HTML ARGHE, DUYE L AR A GE A% L

Format Size Download time Parsetime Total load time
Verbose XML 582960 bytes 999.4ms 430ms 13425ms
Verbaose JSON-P 487913 bytes 598.2ms 0.0ms 598.2 ms
Simple XML 437960 bytes 475.1ms 83.1ms 558.2ms
Verbose JSON 487 895bytes 527.7ms 26.7ms 554.4 ms
Simple JSON 392,895bytes 498.7ms 29.0ms 527.7 ms
Simple JSON-P 392913 bytes 454.0ms 30y 457.1 ms

Array JSON 292 895bytes 3054 ms 18.6ms IM0ms

Array JSON-P 292.912bytes 316.0ms 34ms 3194 ms
Custom Format (script insertion) ~ 222,912bytes 66.3ms 11.7ms 78.0ms

Custom Format (XHR) 221892 bytes 63.1ms 14.5ms 776ms

Verbase XML | |
Verbase JSON-P |]
Simple XML (XHR) [———————mm
Verbase JSON (XHR) | B
Simple JSON (YHR) [———————
Simple JSON-p [y
Array JSON (XHR) [0
Ay SONP |———3
Custom Format (insertion) _:l
Custom Format (HR) [
0 20 40 60 S0 100 1200 1400 1600
[© Download time (ms) @ Parse time (ms)]

Figure 7-1. A comparison of data format download and parse times
7-1 B A EHE R U BT I R)

Keep in mind that these numbers are from a single test run in a single browser. The results should be used as
general indicators of performance, not as hard numbers. You can run these tests yourself at

http://techfoolery.com/formats/.

TR IR SR A B & B AT — CNRSRAT K S IR AT I R PE B R AR, T A2

VIRECT o ARl LU CIs T 5k, 47T http:/techfoolery.com/formats/.

Ajax Performance Guidelines Ajax #:#gm S

Once you have selected the most appropriate data transmission technique and data format, you can start to
consider other optimization techniques. These can be highly situational, so be sure that your application fits the

profile before considering them.

— EIRIEFE T e 5 3G B A A BRI E M 3, A BT 467 FE A LA BRI o X LEROR AR
FARG DU, 7225 18 EA 1200 5 AR IR N IR 2 15 BE A 16 1 I LU

Cache Data 2217 53E

The fastest Ajax request is one that you don't have to make. There are two main ways of preventing an

unnecessary request:

IR Ajax TESRAGEIRAZRIE . AT PR 5 E VR A A s BRI K

* On the server side, set HTTP headers that ensure your response will be cached in the browser.

FERRSS fvdin, BB HTTP Sk, A ORIR MR SOR D7 AL W as o

* On the client side, store fetched data locally so that it doesn't have be requested again.

FER 3, TAHGEAF TR Bl ANEL 2 Ui SR 7] — s o

The first technique is the easiest to set up and maintain, whereas the second gives you the highest degree of

control.

IR R Sy BB AN, 10 S AN IR ORCRR R

Setting HTTP headers #%& HTTP 3k

If you want your Ajax responses to be cached by the browser, you must use GET to make the request. But
simply using GET isn't sufficient; you must also send the correct HTTP headers with the response. The Expires
header tells the browser how long a response can be cached. The value is a date; after that date has passed, any
requests for that URL will stop being delivered from cache and will instead be passed on to the server. Here is

what an Expires header looks like:

WIERARAT . Ajax W N SCRERNS B0 V38 BT 2R A7, AR AZIAE BTG RIS GET J7vk. (HIXIEA 7847,
PR WA ZBAE M S 4R SC R &I E A) HTTP Sk o Expires Sk 25 RN Sa 8% N 24 22 A7 0 W AR SC 2K TH] . HAR 2 —AS
HIH, M2 G 1Z URL KA FNE KA NG AE 3RS, M T8 vy IR %545 . —A> Expires 3k
WK

Expires: Mon, 28 Jul 2014 23:30:00 GMT

This particular Expires header tells the browser to cache this response until July 2014. This is called a far

future Expires header, and it is useful for content that will never change, such as images or static data sets.

XA Expires Sk 15 VR U A% S A B NAR SCELE 2014 5 7 X2 Bl (BRI R K Expires Sk,
T IBLERASAL A, il P 7 A A Hoa 2k -

The date in an Expires header is a GMT date. It can be set in PHP using this code:

Expires Sk H 2 GMT HIH. "&#E PHP Th i B an R AR i & .

$lifetime = 7 * 24 * 60 * 60; // 7 days, in seconds.

header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT");

This will tell the browser to cache the file for 7 days. To set a far future Expires header, set the lifetime to

something longer; this example tells the browser to cache the file for 10 years:

RORE T VRN VT A AT BB 7 K. BERCE MBI AK Expires Sk, RFERIE A B E A, MG
T VRS AF ST 10 4

$lifetime = 10 * 365 * 24 * 60 * 60; // 10 years, in seconds.

header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT");

An Expires header is the easiest way to make sure your Ajax responses are cached on the browser. You don't
have to change anything in your client-side code, and can continue to make Ajax requests normally, knowing that
the browser will send the request on to the server only if the file isn't in cache. It's also easy to implement on the
server side, as all languages allow you to set headers in one way or another. This is the simplest approach to

ensuring your data is cached.

— Expires S BRI PRI ST 2SS4 Ajax Wi W AR S (] BLIK) i o AR R B R i (R A AT AR, T 4k
SRR HALH] Ajax 153K, A Sas O SUPE AR AT 2 P I AR IR SRORIE ST IR 55 A o IXAE IR 5% a i th
RA LS, P I 5 #R SeVF AR BEM i AR B Sk o IR DRAIE R IR B 4 22 A4 1) e] B0 5795 o

Storing data locally A< 77 f&$3R

Instead of relying on the browser to handle caching, you can also do it in a more manual fashion, by storing
the responses you receive from the server. This can be done by putting the response text into an object, keyed by
the URL used to fetch it. Here is an example of an XHR wrapper that first checks to see whether a URL has been

fetched before:

BR T AR YR g AL B ORAY 2 A, ARIETT AT TIOVESEINE, EARAT A IS 28 DI 55 2 WA 281 A g B 4 5
FUHE WA NAR SCATIAE XS, BLURL ABERGE . X2 4> XHR 3%, EF ka1 URL
R A5 4O

var localCache = {};
function xhrRequest(url, callback) {
// Check the local cache for this URL.
if (localCachel[url]) {
callback.success(localCache[url]);
return;
H
// 1f this URL wasn't found in the cache, make the request.
var req = create XhrObject();
req.onerror = function() {
callback.error();
I8
req.onreadystatechange = function() {
if (req.readyState == 4) {
if (req.responseText ===" || req.status == '404") {
callback.error();
return;
H
// Store the response on the local cache.
localCache[url] = req.responseText;

callback.success(req.responseText);

—

¥

req.open("GET", url, true);

req.send(null);

—

Overall, setting an Expires header is a better solution. It's easier to do and it caches responses across page
loads and sessions. But a manual cache can be useful in situations where you want to be able to programmatically
expire a cache and fetch fresh data. Imagine a situation where you would like to use cached data for every request,
except when the user takes an action that causes one or more of the cached responses to become invalid. In this

case, removing those responses from the cache is trivial:

MR YE, WE A Expires S HAF MR R 5 XA S, i HLELGRA7 N 2 m] LS 1 B 0
Wio 10— AT A7 ol LUHREP IR LG A7 A R IF IR (A o B RO, RO BRI SR 247 2
FI AT R A A LB A 3 BN I AW AR SRR o X 0N AGAF IR AR S0 g -

delete localCache['/user/friendlist/'];

delete localCache['/user/contactlist/'];

A local cache also works well for users browsing on mobile devices. Most of the browsers on such devices

have small or nonexistent caches, and a manual cache is the best option for preventing unnecessary requests.

A GAF R ARG TAE TR S ik s b o B BRI VRS A7 /N E A AL, T L GA7 1k it
G AL BT R M i L%

Know the Limitations of Your Ajax Library 7T & Ajax R

All JavaScript libraries give you access to an Ajax object, which normalizes the differences between browsers
and gives you a consistent interface. Most of the time this is a very good thing, as it allows you to focus on your
project rather than the details of how XHR works in some obscure browser. However, in giving you a unified
interface, these libraries must also simplify the interface, because not every browser implements each feature. This

prevents you from accessing the full power of XMLHttpRequest.

Pt JavaScript FESEVFURYT] —A> Ajax X5, e DRl ds 2 [0 (2252, RSk H . K24
oL R RXARR U, DU AR AT LOQERIGITH , oA ARLE P30 et 1 XHR (K ARG, SR,
N T ER—AG RN, R 1, PO ASR A T a8 SO T RN DI RE . RAEAHIRANRE

Vi 1) XMLHttpRequest H5¢ 3 fE

Some of the techniques we covered in this chapter can be implemented only by accessing the XHR object
directly. Most notable of these is the streaming feature of multipart XHR. By listening for readyState 3, we can
start to slice up a large response before it's completely received. This allows us to handle pieces of the response in
real time, and it is one of the reasons that MXHR improves performance so much. Most JavaScript libraries,
though, do not give you direct access to the readystatechange event. This means you must wait until the entire

response is received (which may be a considerable amount of time) before you can start to use any part of it.

AT L BRI BRI H AT) XHR XSS (AR A2 AE 2 70 XHR SR 2] 2]
Tt . WAL readyState 3, FATE NI MR SCEAT5E MO ATHUT it e . IXAEBRATHT A
SN AR BRSO W, X AR 2 MXHR RERS Kl FEde M PR RE M s M 22— o AN K2 $L JavaScript JEAS SR VFAR .
Vi) readystatechange S/ o X RIRAT (R AEAF A8 N AR SCHME CrlBE RS M K IR a)) R
AR E .

Using the XMLHttpRequest object directly is not as daunting as it seems. A few quirks aside, the most recent
versions of all major browsers support the XMLHttpRequest object in the same way, and all offer access to the
different readyStates. You can support older versions of IE with just a few more lines of code. Here is an
example of a function that will return an XHR object, which you can then interact with directly (this is a modified

version of what the YUI 2 Connection Manager uses):

FLAEAE A XMLHttpRequest X R IF AR E B RAM AR Mo B L8ANHAT R 280, By i v s il i
HhRAS 2 LA RF)5 U5 FF XMLHttpRequest X1 5%, BIr] 15 A AN [) readyStates. QIR AR SR ERCAS) TE,
St 2) UT AR] 5~ e R B> XHR %5, JRT DUERZRA] GXd YU 2 JE R4 PILgs
RSO ITRRAS)

function createXhrObject() {
var msxml_progid = [

'MSXML2.XMLHTTP.6.0',

'MSXML3.XMLHTTP',
'Microsoft XMLHTTP", // Doesn't support readyState 3.
'MSXML2.XMLHTTP.3.0', // Doesn't support readyState 3.
I;
var req;
try {
req = new XMLHttpRequest(); // Try the standard way first.
H
catch(e) {
for (var 1 =0, len = msxml_progid.length; i <len; ++i) {
try {
req = new ActiveXObject(msxml_progid[i]);
break;

H
catch(e2) { }

-

H
finally {

return req;

}

This will first try the versions of XMLHttp that do support readyState 3, and then fall back to the ones that

don't in case those versions aren't available.

B G 2R S FF readyState 3 () XMLHttpRequest, 2R Ji [0 7& 21 A L6 32 FF AR A I RA

Interacting directly with the XHR object also reduces the amount of function overhead, further improving
performance. Just beware that by forgoing the use of an Ajax library, you may encounter some problems with

older and more obscure browsers.

AT XHR XG0/ T BATH, 0t T PERS. FURMGEE Ajax JE, fR7TRE 6 i R
A 1 B]

Summary &4

High-performance Ajax consists of knowing the specific requirements of your situation and selecting the

correct data format and transmission technique to match.
rrTERE Ajax B04E: FITEPRITH) RARTE K, CERE 0 A Bo % U 5 AR AR SR .

As data formats, plain text and HTML are highly situational, but they can save CPU cycles on the client side.
XML is widely available and supported almost everywhere, but it is extremely verbose and slow to parse. JSON is
lightweight and quick to parse (when treated as native code and not a string), and almost as interoperable as XML.
Character-delimited custom formats are extremely lightweight and the quickest to parse for large datasets, but

may take additional programming effort to format on the server side and parse on the client side.

PR a2 HTML J2 i BRI, (H eI 1548 % 7 i i) CPU M. XML #¢2 W H]
WS FF, RS HER TR AT ZEM% . JSON SR), MRHTIRGE (FF A H ARG A 2
HAEE XML A1 FRF R A2 s AR R, KRR T e e, (Hf
FEFFAER S5 s M i 5, JFAERE) am b o

TR,
%

I "SI

When requesting data, XHR gives you the most control and flexibility when pulling from the page's domain,
though it treats all incoming data as a string, potentially slowing down the parse times. Dynamic script tag
insertion, on the other hand, allows for cross-domain requests and native execution of JavaScript and JSON,
though it offers a less robust interface and cannot read headers or response codes. Multipart XHR can be used to
reduce the number of requests, and can handle different file types in a single response, though it does not cache
the resources received. When sending data, image beacons are a simple and efficient approach. XHR can also be

used to send large amounts of data in a POST.

4 BT T SR B N, XHR S 5 3 (MR B R GE v, S BRI A AN — A 45
AT RERARMRATIE L . 53 U7, SIS IAAR AR A SR SCVFEE BGR SRAMAHIZAT JavaScript Al JSON,
BRI DA 24, T HAREEHE SR Emy MR A . 2 857> XHR AR I ECE, w7 —

VR FR A B[R] (R SRR, RV AN RE AP R B R N AR SC o 2 R IR0 i, BEMG AT b e e] PR R
HRH 7. XHR A POST J7ik kik K& HdE .

In addition to these formats and transmission techniques, there are several guidelines that will help your Ajax

appear to be faster:

Brix etk ANMER R Z At I — LN B Tk — 2D i i Ajax I -

* Reduce the number of requests you make, either by concatenating JavaScript and CSS files, or by using MXHR.

WA SR HRE, AR JavaScript A1 CSS SO, 5 il MXHR.

* Improve the perceived loading time of your page by using Ajax to fetch less important files after the rest of the

page has loaded.

246 ST (NI 18], A DU E AN e, AEHT Ajax ZRECD BB 2T

* Ensure your code fails gracefully and can handle problems on the server side.

A ORARRE B IR AN BB on g HI P, JFAEIR 5% as i AL BEA 1% o

» Know when to use a robust Ajax library and when to write your own low-level Ajax code.

FoAMIAE] — MA@ Ajax P, FTINRS A CHIERE Ajax A0S

Ajax offers one of the largest areas for potential performance improvements on your site, both because so
many sites use asynchronous requests heavily and because it can offer solutions to problems that aren't even
related to it, such as having too many resources to load. Creative use of XHR can be the difference between a
sluggish, uninviting page and one that responds quickly and efficiently; it can be the difference between a site that

users hate to interact with and one that they love.

Ajax ST R stiv AEE BE 2 d KA St Xz —, RO AR 2 ol KA T Sk, SR e de it
TR A BRI Ry %6, XL AW, T 2B 2 BHR . X XHR (1 83 PN AL dn b i 5 A

AN, AR RIGAS A IS, i e NRaE B A] e A SR IR, R T e

#)\FE Programming Practices ZmfEsLEk

Every programming language has pain points and inefficient patterns that develop over time. The appearance
of these traits occurs as people migrate to the language and start pushing its boundaries. Since 2005, when the
term "Ajax" emerged, web developers have pushed JavaScript and the browser further than it was ever pushed
before. As a result, some very specific patterns emerged, both as best practices and as suboptimal ones. These

patterns arise because of the very nature of JavaScript on the Web.

BEFHGRAETE S A A T HARSORBE A I 18] A HERS AN A e o TR IRIAE T, ok (AN T a6 48
FERE S, AW FE L s, B 2005 FLOK, HAREAjax” HBLN, BTOT A X JavaScript A1 53
A IHES A AL L AT . FLE RO tHOL T — AR B RO, BRI DRSS MM0E A HRE A A% . X4
BRI, A2 D5 45 I JavaSeript (1F 512 5E 1) o

Avoid Double Evaluation % — T4

JavaScript, like many scripting languages, allows you to take a string containing code and execute it from
within running code. There are four standard ways to accomplish this: eval_r(), the Function() constructor,
setTimeout(), and setinterval(). Each of these functions allows you to pass in a string of JavaScript code and

have it executed. Some examples:

JavaScript 5VFZ IATE T —HE, ARVFIRIEREF PRI MU B AU I AR B R G 1s AT e . A DY MbsitE
JriEAT PLSEB: eval r(), Function()f4i& 2%, setTimeout()F!l setInterval(). &4~ REL SO VF/RALE N JavaScript

RS, RIGIE TE. il

var numl =5,

num2 = 6,

/leval_r() evaluating a string of code
result = eval_r("numl + num?2"),

//Function() evaluating strings of code

sum = new Function("argl", "arg2", "return argl + arg2");
//setTimeout() evaluating a string of code
setTimeout("sum = numl + num2", 100);
//setInterval() evaluating a string of code

setInterval("sum = numl + num2", 100);

Whenever you're evaluating JavaScript code from within JavaScript code, you incur a double evaluation
penalty. This code is first evaluated as normal, and then, while executing, another evaluation happens to execute
the code contained in a string. Double evaluation is a costly operation and takes much longer than if the same

code were included natively.

ARAE JavaScript ARG IAT (55— B JavaScript AU, ARATH RV 0ACHT . SRACKS B G 4P il
NIERARS, RIGAERITIERE R, BT AR 8 AP A I A A 5 — IRPP Al o IRV R — T & D B AT
55 B A A AT A GRS AT EERE o FH SEAC IR)

As a point of comparison, the time it takes to access an array item varies from browser to browser but varies

far more dramatically when the array item is accessed using eval_r(). For example:

PR AN B, AR SE & B V71— NS 7 R IN R) AT AR, EUERAE T eval_r() Vs) Fe 4
FoR RAHAREE . it

//faster
var item = array[0];
//slower

var item = eval_r("array[0]");

The difference across browsers becomes dramatic if 10,000 array items are read using eval r() instead of

native code. Table 8-1 shows the different times for this operation.

WARAEH] eval QAU FLAAUES DT 10000 AL, AEA R & BRI EOR. £ 8-1 Won T
IXEEERAE I HI B TR o

Table 8-1. Speed comparison of native code versus eval_1() for accessing 10,000 array items

* 8-1 HEAISS eval r()Ujn 10000 SE LI 13 & PL AR

Browser Native code (ms) eval() code (ms)
Firefox 3 10.57 81161
Firefox 3.5 0.72 141.54
Chrome 1 57 106.41
Chrome 2 517 54.55
Internet Explorer 7 31.25 5086.13
Internet Explorer8 40.06 42055
Opera9.64 2m 402.82
(pera 10 Beta 10,52 315.16
Safani3.2 30,37 360.6
Safari4 1216 54.47

This dramatic difference in array item access time is due to the creation of a new interpreter/compiler instance
cach time eval_r() is called. The same process occurs for Function(), setTimeout(), and setInterval(),

automatically making code execution slower.

Vi Bl T 8] B EoR =S, AU ARRR] eval rOI A —ANHT AR/ Gn PESE 1 o [RIFEI L 2
& 4 7E Function(), setTimeout()F setInterval()_I, Hah AL AT IH AR .

Most of the time, there is no need to use eval_r() or Function(), and it's best to avoid them whenever possible.
For the other two functions, setTimeout() and setlnterval(), it's recommended to pass in a function as the first

argument instead of a string. For example:

REZHIEOT, BLEAEH eval r()8% Function(), WERTTREMIUE, REE R ENT. 2T HIMNAR

£, setTimeout()F setlnterval(), B —NSEAEN—NREOMAE— N7 Biln:

setTimeout(function(){
sum = numl + num2;

1, 100);

setInterval(function() {
sum = numl + num2;

§, 100);

Avoiding double evaluation is key to achieving the most optimal JavaScript runtime performance possible.

G, — IR VEAL A SR AL) JavaScript 3247 NP RE R OCHE

Use Object/Array Literals X%/ B A HER

There are multiple ways to create objects and arrays in JavaScript, but nothing is faster than creating object

and array literals. Without using literals, typical object creation and assignment looks like this:

7£ JavaScript 1A Z FONEBIEX AL, HBCA A AT RAEA H R T WRAME
FLR, SRR S A AR S IR -

//create an object

var myObject = new Object();
myObject.name = "Nicholas";
myObject.count = 50;
myObject.flag = true;
myObject.pointer = null;
//create an array

var myArray = new Array();
myArray[0] = "Nicholas";
myArray[1] = 50;
myArray[2] = true;

myArray[3] = null;

Although there is technically nothing wrong with this approach, literals are evaluated faster. As an added
bonus, literals take up less space in your code, so the overall file size is smaller. The previous code can be

rewritten using literals in the following way:

BIRIERAR EIXFEE BT 2 A%, EEEEARR . V04— DEUNRLrAL, EEEAEIR A
FE D7), AR SO RS AT ASE /N o bR A T B e 5 0 N T RE

//create an object
var myObject = {
name: "Nicholas",
count: 50,
flag: true,
pointer: null

¥

//create an array

var myArray = ["Nicholas", 50, true, null];

The end result of this code is the same as the previous version, but it is executed faster in almost all browsers
(Firefox 3.5 shows almost no difference). As the number of object properties and array items increases, so too

does the benefit of using literals.

LA PR 28R L T (R FRCASAR], AR LT A 3 s RIS AT BB (FE Firefox 3.5 1 JLT-3XCHD o Bl
HR G E PEAEH IR I, A8 R R R A AR th R B

Don't Repeat Work AEEHE T1F

One of the primary performance optimization techniques in computer science overall is work avoidance. The
concept of work avoidance really means two things: don't do work that isn't required, and don't repeat work that
has already been completed. The first part is usually easy to identify as code is being refactored. The second
part—not repeating work—is usually more difficult to identify because work may be repeated in any number of

places and for any number of reasons.

FEVE NIRRT B R PEREDE AR Z — it o A o e G AR MRS S b BRI DI ANE
WA LER T, AEERMOLRM TR 5 Ml AR B, 5 —AEER
TAF——TE W ELURAE , PR A T REDR Dy % Fof Jst DR T AEAR 22 5 i AR

Perhaps the most common type of repeated work is browser detection. A lot of code has forks based on the
browser's capabilities. Consider event handler addition and removal as an example. Typical cross-browser code

for this purpose looks like the following:

WV i WL AR B AT AR 2 R 00 O A o DR B AR A T S s RO D RE o LA S A W BRIV I R 3 Ay
i, SRR B s A NS B R

function addHandler(target, eventType, handler){
if (target.addEventListener){ /DOM?2 Events
target.addEventListener(eventType, handler, false);
}else { //IE
target.attachEvent("on" + eventType, handler);
}
}

function removeHandler(target, eventType, handler){
if (target.removeEventListener){ /DOM?2 Events
target.removeEventListener(eventType, handler, false);
}else { //IE

target.detachEvent("on" + eventType, handler);

The code checks for DOM Level 2 Events support by testing for addEventListener() and
removeEventListener(), which is supported by all modern browsers except Internet Explorer. If these methods

don't exist on the target, then IE is assumed and the IE-specific methods are used.

BEACHE I K addEventListener()fll removeEventListener()f £f DOM 25 531] 2 FIF 442 F &0, e R
BB Internet Explorer 2 AT A3 BAR WE 28 I S o W R ST VEAAEAE T target F, A A 2411
WL 1B, JREH] IE R 7%,

At first glance, these functions look fairly optimized for their purpose. The hidden performance issue is in the
repeated work done each time either function is called. Each time, the same check is made to see whether a certain
method is present. If you assume that the only values for target are actually DOM objects, and that the user
doesn't magically change his browser while the page is loaded, then this evaluation is repetitive. If

addEventL.istener() was present on the first call to addHandler() then it's going to be present for each

subsequent call. Repeating the same work with every call to a function is wasteful, and there are a couple of ways

to avoid it.

B, REEREOY VeI H I E 2 AL o Bk L RE fn) UEE T bR A I A T R R T
o BE—I, #RBEATFIREMIRS A, R AM TR A e, WERARIX target ME— O ALZ DOM X%,
1115 FLAL P AN BT BEAE DT I N BEAC R bt 5 i B e, AR A XA It 2 R . WPk addHandler()— 12K
1] addEventListener()8 2 KA & S 8 2E H DLK) ACRY o A8 R T A S 52 R 1 T4 — PR 2%,
EEEZLPIRFS i/ b ey T

Lazy Loading ZEiRin#

The first way to eliminate work repetition in functions is through lazy loading. Lazy loading means that no
work is done until the information is necessary. In the case of the previous example, there is no need to determine
which way to attach or detach event handlers until someone makes a call to the function. Lazy-loaded versions of

the previous functions look like this:

M R B P R AR T RRE IR g . SE IR INAR R R A 0 A B A] 2 iU AT AT T A . 8
RUTATRB 7, AT 2 WA PR vk B i s 23 25 S0, BRI NV A e pR 2. i S 3B 28 1) o
Bk

function addHandler(target, eventType, handler){
//overwrite the existing function
if (target.addEventListener){ /DOM?2 Events
addHandler = function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
s
} else { //IE
addHandler = function(target, eventType, handler){
target.attachEvent("on" + eventType, handler);
53
}

//call the new function

addHandler(target, eventType, handler);
H
function removeHandler(target, eventType, handler){
//overwrite the existing function
if (target.removeEventListener){ /DOM?2 Events
removeHandler = function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
¥
} else { //IE
removeHandler = function(target, eventType, handler){
target.detachEvent("on" + eventType, handler);
I
H
//call the new function

removeHandler(target, eventType, handler);

-~

These two functions implement a lazy-loading pattern. The first time either method is called, a check is made
to determine the appropriate way to attach or detach the event handler. Then, the original function is overwritten
with a new function that contains just the appropriate course of action. The last step during that first function call
is to execute the new function with the original arguments. Each subsequent call to addHandler() or

removeHandler() avoids further detection because the detection code was overwritten by a new function.

XA bR HIK PR E SR N A o XA T VRS IR N, A A O e A8 FH I 5 vk B in
YA ARG, RS BRI A LS IS R E B BB R T o S R R B R S HUR 4G e
PLJE P H addHandler() %4 removeHandler()N A2s fE R, - AT IACHS C 2898 R 75 1 -

Calling a lazy-loading function always takes longer the first time because it must run the detection and then
make a call to another function to accomplish the task. Subsequent calls to the same function, however, are much
faster since they have no detection logic. Lazy loading is best used when the function won't be used immediately

on the page.

AN B 0 280 R U L AE B — A AN 1] 5 DR Ay " b 2B AT AT I AR i 9) 7 — A eR B DL 58 AT
550 AHZ, JaS A RBCRRIRE , DUONASEF AR AR T SR INA06E M 3 s A A2 i _Eo7
HIE I ip 7R e

Conditional Advance Loading 447Nz

An alternative to lazy-loading functions is conditional advance loading, which does the detection upfront,
while the script is loading, instead of waiting for the function call. The detection is still done just once, but it

comes earlier in the process. For example:

BRIEL AL AN T3 — PR A E TN, EAE AN TS i AT R A, o ANSE ARy e B0 I
RAEATIY e Ik, BRI RE ORI . Bl

var addHandler = document.body.addEventListener ?
function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
}:
function(target, eventType, handler){
target.attachEvent("on" + eventType, handler);
I8
var removeHandler = document.body.removeEventListener ?
function(target, eventType, handler){
target.removeEventListener(eventType, handler, false);
}:
function(target, eventType, handler){

target.detachEvent("on" + eventType, handler);

}s

This example checks to see whether addEventListener() and removeEventListener() are present and then
uses that information to assign the most appropriate function. The ternary operator returns the DOM Level 2
function if these methods are present and otherwise returns the IE-specific function. The result is that all calls to

addHandler() and removeHandler() are equally fast, as the detection cost occurs upfront.

XA 4 7 addEventListener()F! removeEventListener() & /5 4711, 2% J5 AR 4 A5 VG a2 e A48 1 R &
—ICHERAERFIR] DOM 2 2 (1) R, an e AT A AR I 1, 5 W3R 8] TE R34 (1) e £ S8)5, Y H addHandler()
F removeHandler() [FIFEAR TR, EARAT I DI RESEHT T o

Conditional advance loading ensures that all calls to the function take the same amount of time. The trade-off
is that the detection occurs as the script is loading rather than later. Advance loading is best to use when a function

is going to be used right away and then again frequently throughout the lifetime of the page.

SRAFTRIN A O/ B AT R K50 PN TRIAH) o AR SR AR BAS I g HEAT G o PO 8GE)+ — A e S |
AP, i FLAEREAS D A A A e WA 3 &

Use the Fast Parts {5 3 5 e 382

Even though JavaScript is often blamed for being slow, there are parts of the language that are incredibly fast.
This should come as no surprise, since JavaScript engines are built in lower-level languages and are therefore
compiled. Though it's easy to blame the engine when JavaScript appears slow, the engine is typically the fastest
part of the process; it's your code that is actually running slowly. There are parts of the engine that are much faster

than others because they allow you to bypass the slow parts.

HAR JavaScript Z8H BARTTZEN, AR TILIE F LS BATHELL BRI P . XA AN
JavaScript 5|3 HRGE S . BAR JavaScript 38 IR A S B V144G 1515, SR 5 3l W2 b B F v
BRIy, SEbR BRI ARAOAS . GBS U AR 2, DU EA I SRVFIR G 3
T HIHR 7)o

Bitwise Operators {7#/EizE AT

Bitwise operators are one of the most frequently misunderstood aspects of JavaScript. General opinion is that
developers don't understand how to use these operators and frequently mistake them for their Boolean equivalents.

As a result, bitwise operators are used infrequently in JavaScript development, despite their advantages.

PLERAFIZ ST /2 JavaScript PEFE RN AL o —MINEIERL, TR E AKNIE W74 X Lo ff:
¥, @R RIEA PR~ . 4R JavaScript FRPAE A e B S5, RSN A

JavaScript numbers are all stored in IEEE-754 64-bit format. For bitwise operations, though, the number is
converted into a signed 32-bit representation. Each operator then works directly on this 32-bit representation to
achieve a result. Despite the conversion, this process is incredibly fast when compared to other mathematical and

Boolean operations in JavaScript.

JavaScript H 5 P44 TEEE-754 brifE 64 (iR NArfit. fEfriafirh, MOy g oA 1S 32 fifs X
BERH AT B FAR AR AEIXAS 32 A8 ESCBEE R o SR H 28, XA RS JavaScript H A H A4l /R
BB A R AR R

If you're unfamiliar with binary representation of numbers, JavaScript makes it easy to convert a number into a

string containing its binary equivalent by using the toString() method and passing in the number 2. For example:

U SRR BT (K B R R IEAN A, JavaScript °] DUR 2 5y ke 807 e 4 o0 4 R UK b s
o HAEH] toString VT AFFALANE Y 2 (SO - Bil:

var numl = 25,
num2 = 3;
alert(num]l.toString(2)); /"11001"

alert(num?2.toString(2)); // "11"

Note that this representation omits the leading zeros of a number.

TR, ZARE IR TR

There are four bitwise logic operators in JavaScript:

JavaScript H A DU 22 5 EAE LT«

Bitwise AND £/ 5

Returns a number with a 1 in each bit where both numbers have a 1

P RAE B AL 1, S5 RA R 1

Bitwise OR iz 5

Returns a number with a 1 in each bit where either number has a 1

A AR 1, 45 R 1

Bitwise XOR {7 7%

Returns a number with a 1 in each bit where exactly one number has a 1

PR R AN 1, iR]

Bitwise NOT {7 3E

Returns 1 in each position where the number has a 0 and vice versa

B0 IRM 1, IR

These operators are used as follows:

KL HIVA W T

//bitwise AND

var resultl =25 & 3;//1
alert(result.toString(2)); /"1"
//bitwise OR

var result2 = 25 | 3; //27
alert(resul2.toString(2)); /"11011"
//bitwise XOR

var result3 =25 3; //26
alert(resul3.toString(2)); //"11000"
//bitwise NOT

var result = ~25; //-26

alert(resul2.toString(2)); //"-11010"

There are a couple of ways to use bitwise operators to speed up your JavaScript. The first is to use bitwise
operations instead of pure mathematical operations. For example, it's common to alternate table row colors by

calculating the modulus of 2 for a given number, such as:

AVFZ ik UMl I8 S48 i JavaScript I RE . B 5G] UM IS AT AR Al . i, @

HOR AR 2 BB LS RA T AT s, il

for (var i=0, len=rows.length; i < len; i++){
if (1% 2) {
className = "even";
} else {
className = "odd";

}

//apply class

Calculating mod 2 requires the number to be divided by 2 to determine the remainder. If you were to look at
the underlying 32-bit representation of numbers, a number is even if its first bit is 0 and is odd if its first bit is 1.
This can easily be determined by using a bitwise AND operation on a given number and the number 1. When the
number is even, the result of bitwise AND 1 is 0; when the number is odd, the result of bitwise AND 1 is 1. That

means the previous code can be rewritten as follows:

VSO 2 BOE, w EEHDX AR DL 2 XA R R A WORRE 21 32 A4y R E (3D ok,
PR BB B AR A 0, AP EUR B ARAL 2 1o WUER BB L, A 1 HEATAL S B AE R S5 30 0;
WEARIEBON TR, A EH 1 AT SRR 1. gt Uil Bl AR LS 4

for (var i=0, len=rows.length; i < len; i++){
ifi&l){
className = "odd";
} else {

className = "even";

//apply class

-~

Although the code change is small, the bitwise AND version is up to 50% faster than the original (depending

on the browser).

BRI EENAK, B4 5 FRA FL ISR AR R T 50% (G T8 o

The second way to use bitwise operators is a technique known as a bitmask. Bitmasking is a popular technique
in computer science when there are a number of Boolean options that may be present at the same time. The idea is
to use each bit of a single number to indicate whether or not the option is present, effectively turning the number
into an array of Boolean flags. Each option is given a value equivalent to a power of 2 so that the mask works. For

example:

S R AL ER AT BB AL S o AT HERDAE T SRR h R — P AR, R] [RS8 22 A1 2K
METR, PR B R A AT R bR S . RS T RN IR A T 2 1. il

var OPTION A =1;
var OPTION B = 2;
var OPTION C =4;
var OPTION D =§;

var OPTION _E = 16;

With the options defined, you can create a single number that contains multiple settings using the bitwise OR

operator:

M E SOX LRI, AT DL A B A G — Ny ok 5 2 At

var options = OPTION_A | OPTION_ C | OPTION_D;

You can then check whether a given option is available by using the bitwise AND operator. The operation

returns O if the option isn't set and 1 if the option is set:

PRAT LA AT 5 B E A A — AN g R T2 A AT H o A SRAZETUR W E S S E5 R 0, AR B 1K

2B RN 1

//is option A in the list?

if (options & OPTION_A){
//do something

}

//is option B in the list?

if (options & OPTION_B){

//do something

Bitmask operations such as this are quite fast because, as mentioned previously, the work is happening at a
lower level of the system. If there are a number of options that are being saved together and checked frequently,

bitmasks can help to speed up the overall approach.

BOXFEIIALHERS B AR R B, DD TSR 2UR S Y, BRAE R AEAE R GRIZ o WERVF 2RI RAF AL
e, AL B IR AR TERE .

Native Methods & 4751

No matter how optimal your JavaScript code is, it will never be faster than the native methods provided by the
JavaScript engine. The reason for this is simple: the native parts of JavaScript—those already present in the
browser before you write a line of code—are all written in a lower-level language such as C++. That means these
methods are compiled down to machine code as part of the browser and therefore don't have the same limitations

as your JavaScript code.

TAREREAAL JavaSeript 48RS, ‘&K 23 L JavaScript 5 HR A Jr AR T vk s o L5 BR] - 5
JavaScript [)5 2E 8 ——EAR B ARG Z B e C2AHAE TR a2 T—RANRZGE 551, E
Cto XA XL LG BB, AR 1870, AMEARI JavaScript AT A 2
B il o

A common mistake of inexperienced JavaScript developers is to perform complex mathematical operations in
code when there are better performing versions available on the built-in Math object. The Math object contains
properties and methods designed to make mathematical operations easier. There are several mathematical

constants available:

22U AN AL JavaScript TFAH 22 H AL — N DGR AEA U BT R 2RI EC S 5, M BcAT {8 H] A & Math
XGRS LEVE RE LS (RRA . Math MRS LTI B YERUE, M rAIe R S XS — 24y
L€

Constant Meaning

Math.E The value of E, the base of the natural logarithm
Math.LN10O The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base-2 logarithm of £
Math.LOG10E The base-10logarithm of E
Math.PI The value of n
Math.SQRT1_2 Thesquare root of ¥
Math.50RT2 The square root of 2

Each of these values is precalculated, so there is no need for you to calculate them yourself. There are also

methods to handle mathematical calculations:

KB REANBUEHGE IO SEAr 0, PR LMRA TG 2 B SR SEEAT. AT LA PRAC IS ST 5

Method Meaning

Math.abs(num) The absolute value of num
Math.exp(num) Math , E™"

Math. log(num) The logarithm of num
Math.pow(num, power) numP™er
Math.sqrt{num) The square root of num
Math.acos(x) The arc cosine of x
Math.asin(x) The arc sine of x
Math.atan(x) The arc tangent of x
Math.atan2 (y,x) The arc tangent of
Math.cos(x) The cosine of
Math.sin(x) Thesine of x
Math.tan(x) The tangent of

Using these methods is faster than recreating the same functionality in JavaScript code. Whenever you need to

perform complex mathematical calculations, look to the Math object first.

A8 HX L8R S LU [FIRE TN BERY JavaScript AR SEPR o R A EEAT R ARKC AT N, /5 & Math X145

Another example is the Selectors API, which allows querying of a DOM document using CSS selectors. CSS
queries were implemented natively in JavaScript and truly popularized by the jQuery JavaScript library. The
jQuery engine is widely considered the fastest engine for CSS querying, but it is still much slower than the native
methods. The native querySelector() and querySelectorAll() methods complete their tasks, on average, in 10%
of the time it takes for JavaScript-based CSS querying. Most JavaScript libraries have now moved to use the

native functionality when available to speed up their overall performance.

Mol Rk RESE APL T LUEAE] CSS i Fe4s IBFE £ i) DOM XY . CSS £ ik JavaScript it A2 5K
WLIFFE L jQuery IXA™ JavaScript EHE] TTK o jQuery 1M K & e 1 CSS if) 512, (H2 e At A
7% U querySelector() Al querySelectorAll() /7 V258 B EATIAT S 1, V34 W F 2255 T JavaScript [

CSS i) 10%[1I). K2 % JavaScript 78 L2 1 I A4 R 25 DASE s AT TR R AR P o

Always use native methods when available, especially for mathematical calculations and DOM operations.

The more work that is done with compiled code, the faster your code becomes.

BT AT I, R EAT, JEHGE A2 SO DOM #4F . HIgn i Ja (M4 QR AoR 22) 2, AR
IRV ET g /N

Summary &4

JavaScript presents some unique performance challenges related to the way you organize your code. As web
applications have become more advanced, containing more and more lines of JavaScript to function, some

patterns and antipatterns have emerged. Some programming practices to keep in mind:

JavaScript #2 TSR PERE B, R R BIIRAGURRI I T7 . W DU HIAR A Ok B = 2, i
JavaScript fURGBORIEZE , L 7 LU R AL LR e 2 .

* Avoid the double evaluation penalty by avoiding the use of eval_r() and the Function() constructor. Also, pass

functions into setTimeout() and setInterval() instead of strings.

T 8 S eval r(OF! Function()F4) i 258 %0 KPPl . B4, 45 setTimeout() A setInterval()f% i B 5 2

AR T RS

¢ Use object and array literals when creating new objects and arrays. They are created and initialized faster than

nonliteral forms.
BEEF T S A AT N 3 B A B el AR B T B A gt s R

* Avoid doing the same work repeatedly. Use lazy loading or conditional advance loading when

browser-detection logic is necessary.
T G T S EAT AR IA) A o 2 5 A S s I, A T S SR N sl 4 A T 48

* When performing mathematical operations, consider using bitwise operators that work directly on the

underlying representation of the number.

MPTHCEEAN, BISAERRE, AT R TR

* Native methods are always faster than anything you can write in JavaScript. Use native methods whenever

available.
JR A ik e L JavaScript 5 AR PE P, AT R AE vk

As with many of the techniques and approaches covered in this book, you will see the greatest performance

gains when these optimizations are applied to code that is run frequently.

A5 TARZEARNIE, WA X LA N I AR e 28 i AT AR b, 1R &7 B BRI P RE R
It

$JLE Building and Deploying High-Performance
JavaScript Applications

A1) IR 2 = R JavaScript N AR

According to a 2007 study by Yahoo!'s Exceptional Performance team, 40%—60% of Yahoo!'s users have an
empty cache experience, and about 20% of all page views are done with an empty cache
(http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). In addition, another more recent study by the
Yahoo! Search team, which was independently confirmed by Steve Souders of Google, indicates that roughly

15% of the content delivered by large websites in the United States is served uncompressed.

HRAE Yahoo! s fE HIBAAE 2007 “FREATHIRESL, 40%-60%[1) Yahoo! H] M A M I AT IS, K4
20% G A FE AL 2247 Chttp://yuiblog.com/blog/2007/01/04/performance-research-part-2/) . %34F, [Yahoo!
NI, It Google 1] Steve Souders FTilk SE 1) — W Frift FER B, K2 15%(1) 5% R R k9 i B 42

PR N A T4

These facts emphasize the need to make sure that JavaScript-based web applications are delivered as
efficiently as possible. While part of that work is done during the design and development cycles, the build and
deployment phase is also essential and often overlooked. If care is not taken during this crucial phase, the

performance of your application will suffer, no matter how much effort you've put into making it faster.

XL AR A ZEF ORI S IE T TavaScript 9 R4 GO R m ot Al . BRI TARAE BT T AL
FErp 258 i, HAY AT E T A AR 2 HAR A B WERAERXAS GBI RE P AN Dy, AR TR
RIPERERS 32 RIS, TR IRERESS e R,

The purpose of this chapter is to give you the necessary knowledge to efficiently assemble and deploy a
JavaScript-based web application. A number of concepts are illustrated using Apache Ant, a Java-based build tool
that has quickly become an industry standard for building applications for the Web. Toward the end of the chapter,

a custom agile build tool written in PHPS is presented as an example.

ARTE) H L R 2 FI U, A RO GUFEIE LT JavaScript [Web NIRRT . —LEREEAEH]
Apache Ant FEAT BT, ER—MIET Java IBIEE TR, FFARPLECA TF A M TN FTRE P Dol ifE . fEAS T
KEE, gttt 7 PHPS 55 hil Rk i T & TR AIB 5

Apache Ant

Apache Ant (http://ant.apache.org/) is a tool for automating software build processes. It is similar to make, but
is implemented in Java and uses XML to describe the build process, whereas make uses its own Makefile format.

Ant is a project of the Apache Software Foundation (http://www.apache.org/licenses/).

Apache Ant Chttp://ant.apache.org/) &~ A A B T H . 2R LLT make, {H7E Java HECHL, JF
A8 FH XML AR A ik 72, 17 make A e F UK Makefile SCHER$. Ant /& Apache S R34 25 11— A

T Chttp://www.apache.org/licenses/) -

The main benefit of Ant over make and other tools is its portability. Ant itself is available on many different

platforms, and the format of Ant's build files is platform independent.

Ant 5 make SEIAB T HALE, UHAAETERITBAEE. Ant RS ATHIEFZ ARG E, Ant TFASCH:
% 5 5K,

An Ant build file is written in XML and named build.xml by default. Each build file contains exactly one

project and at least one target. An Ant target can depend on other targets.

FRONTT Ant TF R SO XML RS build.xmle BN TF A SCHE R AE—N 0 H fl 2 b—A sk, —A>
Ant H PR T oAt H b A

Targets contain task elements: actions that are executed atomically. Ant comes with a great number of built-in
tasks, and optional tasks can be added if needed. Also, custom tasks can be developed in Java for use in an Ant

build file.

HbsR SRS e 2 L Bas T ahfE. Ant Bof KRN BAESS, QR 28T LRSIl AL 55
UEAh, Ant QU SCHH TR B € SAESS W] Java JT A .

A project can have a set of properties, or variables. A property has a name and a value. It can be set from
within the build file using the property task, or might be set outside of Ant. A property can be evaluated by

placing its name between ${ and }.

—ANIH AT AN E B R IR DR AR TR AN B W AR T RSO AR property
ESBE, S Ant ZHAMRE . SITEIERER: RE A ides () 2.

The following is an example build file. Running the default target (dist) compiles the Java code contained in

the source directory and packages it as a JAR archive.

N NI RSB 247N H AR (dist) G FEURAY H 5 1 Tava AU IR0 > JAR S0,

<?xml version="1.0" encoding="UTF-8"?>

<project name="MyProject" default="dist" basedir=".">

<l-- set global properties for this build -->
<property name="src" location="src"/>
<property name="build" location="build"/>

<property name="dist" location="dist"/>

<target name="init">

<l-- Create the time stamp -->

<tstamp/>

<!I-- Create the build directory structure used by compile -->
<mkdir dir="$ {build}"/>

</target>

-]]

<target name="compile" depends="init" description="compile the source">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="$ {src}" destdir="$ {build}"/>

</target>

<target name="dist" depends="compile" description="generate the distribution">
<l-- Create the distribution directory -->

<mkdir dir="$ {dist}/lib"/>

<!-- Put everything in ${build} into the MyProject-$ {DSTAMP} jar file -->
<jar jarfile="$ {dist}/lib/MyProject-$ {DSTAMP} .jar" basedir="$ {build}"/>

</target>

<target name=

clean" description="clean up">

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="$ {build}"/>

<delete dir="${dist}"/>

</target>

</project>

Although Apache Ant is used to illustrate the core concepts of this chapter, many other tools are available to

build web applications. Among them, it is worth noting that Rake

(http://rake.rubyforge.org/) has been gaining popularity in recent years. Rake is a Rubybased build program with
capabilities similar to make. Most notably, Rakefiles (Rake's version of Makefiles) are written using standard

Ruby syntax, and are therefore platform-independent.

BARIX FAFH Apache Ant KU AT (#2008 &, EERZ e THTHTFIFRMW TN g, L
W, {H A —$E1 2 Rake Chttp://rake.rubyforge.org/) CVEEIT JLAFEIRAF I M o e {HAHF B I /&, Rakefile (Rake

Ji i) Makefile) i HIAx#E Ruby 1A TS, BIHEAT V-G ICKME.

Combining JavaScript Files &3 JavaScript X4

According to Yahoo!'s Exceptional Performance team, the first and probably most important guideline for
speeding up your website, especially for first-time visitors, is to reduce the number of HTTP requests required to
render the page (http://yuiblog.com/blog/2006/11/28/performance-research-part-1/). This is where you should
start looking for optimizations because combining assets usually requires a fairly small amount of work and has

the greatest potential benefit for your users.

R Yahoo! SUBERE A RIBTFT, 55— A2 o TR 10 i vt W wafi T 32 PR R DU, R) B S 28 58— Ik Uy
I WS P S G IR it (¥ HTTP 45 3K (9 40
(http://yuiblog.com/blog/2006/11/28/performance-research-part-1/) o X AR TAERIANT A5, K& IF 8

Y RENS LI 220 (0 AR D AT A B K I AE A 2

Most modern websites use several JavaScript files: usually a small library, which contains a set of utilities and
controls to simplify the development of richly interactive web applications across multiple browsers, and some
site-specific code, split into several logical units to keep the developers sane. CNN (http://www.cnn.com/), for
example, uses the Prototype and Script.aculo.us libraries. Their front page displays a total of 12 external scripts
and more than 20 inline script blocks. One simple optimization would be to group some, if not all, of this code
into one external JavaScript file, thereby dramatically cutting down the number of HTTP requests necessary to

render the page.

K2 BIA 3 AE] 224> JavaSeript SCfF: W ARG A/NUE, B A TR S DR
e AL N RSP IT A, AT LE i A ORI, 20 T LA IZ R R T A T A DR . 91

1 CNN Chttp://www.cnn.com/) , {#i /] Prototype F! Script.aculo.us . ‘B TLIE R T 12 NN AR

i 20 A IRBIA SR . AN]SR DL R S LA & 01— DA JavaScript SO, TTANE 4, TR
K FRARIE G SO BT s HTTP 155K AR

Apache Ant provides the ability to combine several files via the concat task. It is important, however, to
remember that JavaScript files usually need to be concatenated in a specific order to respect dependencies. Once
these dependencies have been established, using a filelist or a combination of fileset elements allows the order of

the files to be preserved. Here is what the Ant target looks like:

Apache Ant i1 concat fE55$2ME5 I LA SCAII e) o IXARFE L, (HZ 20T JavaScript SCIFIR 75 4
P2 AR 2R Ry B P AT 3 3 . — FLEIREE TS &R, (] filelist B0415 18 H] fileset JU 3 MR IX AL
PRRIFARAT T Ko Ant HARMATIFE T 007 F

"

<target name="js.concatenate">
<concat destfile="$ {build.dir}/concatenated.js">

<filelist dir="$ {src.dir}"

files="a.js, b.js"/>

<fileset dir="$ {src.dir}"

includes="* js"

]

excludes="a.js, b.js"/>
</concat>

</target>

This target creates the file concatenated.js under the build directory, as a result of the concatenation of a.js,

followed by b.js, followed by all the other files under the source directory in alphabetical order.

U HASMATZEFF R H 3% R AU concatenated.js SCHF, ‘B SGIERE ajs, RIS b.js, ARG EUE H X Mg RE
I A) e A

Note that if any of the source files (except possibly the last one) does not end with either a semicolon or a line
terminator, the resulting concatenated file may not contain valid JavaScript code. This can be fixed by instructing

Ant to check whether each concatenated source file is terminated by a newline, using the fixlastline attribute:

RSO (Al RERR T Ha—AY) WRAE L5 BT & 75 45101, A& H ORI s Rl g
AN A R JavaScript AAG . ATXFEE IE: 575 Ant K BRSO T LABHATSE 0, {8 fixlastline J&
P

<concat destfile="$ {build.dir}/concatenated.js" fixlastline="yes">

</concat>

Preprocessing JavaScript Files FiiAt# JavaScript X4

In computer science, a preprocessor is a program that processes its input data to produce output that is used as
input to another program. The output is said to be a preprocessed form of the input data, which is often used by
some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the
preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro
expansions, while others have the power of fully fledged programming

languages.—http://en.wikipedia.org/wiki/Preprocessor

FEVEEERUREE S0 FR2S (0AF 55 2 4 i N B Ab Bk g — Tl A 08 5 P A5 D PO 88000 o e o Pyl 2 3
TPt WA B A Al , I H A L SR e DA, g 4% o AR B AR i B AR AL 5 1
AL PRES IR AT 5%, A7 SETIAR BEAS I BEAR B fa] B0 SCARR AN 29 e, 1t o L2 U s 0 8 A A I A R v 5

(HERE TR

—http://en.wikipedia.org/wiki/Preprocessor

Preprocessing your JavaScript source files will not make your application faster by itself, but it will allow you
to, among other things, conditionally instrument your code in order to measure how your application is

performing.

TRAEBEAE (1) JavaScript P IFASEIRIIRLF LR, (HE RVHRAEAE P IMASCEE S A 1024y
PE, I A A N LE IR, KA AR TR IO PR fE

Since no preprocessor is specifically designed to work with JavaScript, it is necessary to use a lexical
preprocessor that is flexible enough that its lexical analysis rules can be customized, or else use one that was
designed to work with a language for which the lexical grammar is close enough to JavaScript's own lexical

grammar. Since the C programming language syntax is close to JavaScript, the C preprocessor (Cpp) is a good

choice. Here is what the Ant target looks like:

H T L1714 JavaScript B TIACEERS, A L EATH — AN E AL BEAS, & 208 R 55,] i Ho
VES TR, AR — A D SRR S sk i T, HORyETEYE S JavaScript H CUTRVE TR VR RSB
T C i 5 VAR JavaScript, C FALEERS (cpp) Sie —MRBLFIIER:. Ant HEREL T

<target name="js.preprocess" depends="js.concatenate">
<apply executable="cpp" dest="$ {build.dir}">

<fileset dir="$ {build.dir}"

includes="concatenated.js"/>

<arg line="-P -C -DDEBUG"/>

<srcfile/>

<targetfile/>

<mapper type="glob"
from="concatenated.js"

to="preprocessed.js"/>
</apply>

</target>

This target, which depends on the js.concatenate target, creates the file preprocessed.js under the build

directory as a result of running cpp on the previously concatenated file. Note that cpp is run using the standard -P

(inhibit generation of line markers) and -C (do not discard comments) options. In this example, the DEBUG

macro is also defined.

X — H PR T js.concatenate H bR, & 7EHT 0 FER A HIEAT cpp, Hgh BB BT A H 36 T A
preprocessed.js Ao E R cpp Ml FHARHE-P FIHIZbRIC A B0 Fl-c CAMIBRARS) LI, 761X ik

& X 7 DEBUG %:.

With this target, you can now use the macro definition (#define, #undef) and the conditional compilation (#if,
#ifdef, #ifndef, #else, #elif, #endif) directives directly inside your JavaScript files, allowing you, for example, to

conditionally embed (or remove) profiling code:

T IEAHEMAE, VR R] LA EAEAE JavaScript SO %25 U (#define, #undef) FIZIEgmiF (#if,
#ifdef, #ifndef, #else, #elif, #endif) F52. Flan, R0 DEH SRR EIERD D3RR :

#ifdef DEBUG

(new YAHOO.util.YUILoader({
require: ['profiler'],
onSuccess: function(o) {
Y AHOO.tool.Profiler.registerFunction('foo', window);
H
})).insert();

#endif

If you plan to use multiline macros, make sure you use the Unix end-of-line character (LF). You may use the

fixcrlf Ant task to automatically fix that for you.

WERARAT AT A 2 AT, WA ORIRAE T Unix MATEERAT (LF) o ARV H] Ant f£:5% fixerlf 3B RS
(e

Another example, not strictly related to performance but demonstrating how powerful JavaScript
preprocessing can be, is the use of "variadic macros" (macros accepting a variable number of arguments) and file

inclusion to implement JavaScript assertions. Consider the following file named include.js:

T AT ANKHE, AHBEET T JavaScript TG LA A 08K, B TS EUN R CRECT
AR ZHD RSO, LASEHL JavaScript Wit . %18 T IHIIX A include.js SC1F

#ifndef INCLUDE _JS

#define INCLUDE JS

#itdef DEBUG
function assert(condition, message) {
// Handle the assertion by displaying an alert message

// possibly containing a stack trace for example.

}

#define ASSERT(x, ...) assert(x, ## VA _ARGS)
#else
#define ASSERT(x, ...)

#endif

#endif

You can now write JavaScript code that looks like the following:

IAEAR AT UG X AL S JavaScript AU :

#include "include.js"

function myFunction(arg) {

ASSERT(YAHOO.lang.isString(argvar), "arg should be a string");

#ifdef DEBUG
YAHOO.log("Log this in debug mode only");

#endif

-~

The assertion and the extra logging code appear only when the DEBUG macro is set during development.

These statements disappear in the final production build.

W AR A M H RS X IAETT RO RS (1) DEBUG Zedrt s 1X 88 BN 25 H IRAE B 44 7 it o

JavaScript Minification JavaScript %#&

JavaScript minification is the process by which a JavaScript file is stripped of everything that does not
contribute to its execution. This includes comments and unnecessary whitespace. The process typically reduces
the file size by half, resulting in faster downloads, and encourages programmers to write better, more extensive

inline documentation.

JavaScript B & A2 AR —A> JavaScript SCAFH —DHE T R W AR . AHREEREAA L ZL 2%
TRAE P R SO R ik 22, A RGE NGRS, JFSiRE e 5 A, SRR YIRS
=R

JSMin (http://www.crockford.com/javascript/jsmin.html), developed by Douglas Crockford, remained the
standard in JavaScript minification for a long time. However, as web applications kept growing in size and
complexity, many felt it was time to push JavaScript minification a step further. This is the main reason behind
the development of the YUI Compressor (http://developer.yahoo.com/yui/compressor/), a tool that performs all
kinds of smart operations in order to offer a higher level of compaction than other tools in a completely safe way.

In addition to stripping comments and unnecessary whitespace, the YUI Compressor offers the following features:

JSMin Chttp://www.crockford.com/javascript/jsmin.html) , H Douglas Crockford JF &, ‘& f&+F I~ JavaScript

KB ARHEARAC BN [a) . SR B 99 208 B R e AR SR SR 2 PE B AN, 1R 22 NNl JavaScript 3%

MR AAERE— 2 . IR TF R YUIL R4 11 2 2255 Chttp://developer.yahoo.com/yui/compressor/) ‘4
BET PRI REERAE, A T IR LE IS TR B S R B A 0T B BLSE e TSI B T A ER
ERAALE 2K, YUI E40 a3 ib et LR Thag

* Replacement of local variable names with shorter (one-, two-, or three-character) variable names, picked to

optimize gzip compression downstream

KR A A B LLE R L (LA 24y, B3 A7), DRSS gzip 46 TAF

* Replacement of bracket notation with dot notation whenever possible

(e.g., foo[""bar""] becomes foo.bar)

JETRERE F s S B RF B KERATEAT (910 foo:["bar"]2 & foo.bar)

* Replacement of quoted literal property names whenever possible

(e.g., {""foo"":""bar'"} becomes {foo:"’bar"’})

SR G S AR E RS (40 {"foo":"bar" } A i { foo:"bar"})

* Replacement of escaped quotes in strings (e.g., ‘aaa\'bbb’ becomes **aaa‘bbb™)

B AT B P (515 (] 1"aaa\'bbb % 1 "aaa'bbb")

* Constant folding (e.g., "'foo""+"bar" becomes "‘foobar'")

HEITE (U " foo"+"bar" A% Ji%, "foobar")

Running your JavaScript code through the YUI Compressor results in tremendous savings compared to JSMin
without any further action. Consider the following numbers on the core files of the YUI library (version 2.7.0,

available at http://developer.yahoo.com/yui/):

55 ISMin AHLE, dl5d YUL B4 31548 T 45 1% JavaScript ARSI G HT E 2 8 E . R %2 YUI
FEIIAZ RIS (2.7.0 [, FakdihEk: http:/developer.yahoo.com/yui/) :

Raw yahoo.js, dom.js and event.js 192,164 bytes
yahoo.js, dom.js and event.js + JSMin 47,316 bytes

yahoo.js, dom.js and event.js + YUl Compressor 35,896 bytes

In this example, the YUI Compressor offers 24% savings out of the box compared to JSMin. However, there
are things you can do to increase the byte savings even further. Storing local references to objects/values,
wrapping code in a closure, using constants for repeated values, and avoiding eval (and its relatives, the Function
constructor, setTimeout, and setInterval when used with a string literal as the first argument), the with keyword,
and JScript conditional comments all contribute to making the minified file smaller. Consider the following

function, designed to toggle the selected class on the specified DOM element (220 bytes):

TEXAMFH, YUI 4i#s 5 ISMin AHLETT 4 T 24%5 18] R0, ARIE AT LLdE— 258 ¥ Al . K el
SURFEREER SME T, R IR, R SRR E R, % eval (LLAAILUK Function 3t 35,
setTimeout Il setInterval {174 Hf HERAE NS ASH0O , with KBS, ISeript R, #WHT
BEPRASC FETE R IR R, IR EE R € DOM JCF I selected 28 (220 “F74Y) -

function toggle (element) {
if (YAHOO.util.Dom.hasClass(element, "selected")){
YAHOO.util.Dom.removeClass(element, "selected");
}else {

YAHOO.util.Dom.addClass(element, "selected");

1
s

-~

The YUI Compressor will transform this code into the following (147 bytes):

YUI K 4a s AR #e e ™ (147 £795) -

function
toggle(a) {if(YAHOO.util.Dom.hasClass(a,"selected")){Y AHOO.util. Dom.removeClass(a,"selected") } else { YAH

0O0.util.Dom.addClass(a,"selected")} };

If you refactor the original version by storing a local reference to YAHOO.util.Dom and using a constant for

the "selected" value, the code becomes (232 bytes):

WIRARE R R RS, ¥ YAHOO.util. Dom f7 A—AN Rl 5 1, A8 & A7 T8 "select (H, AR Ak
WREIREF (232 7)) -

function toggle (element) {
var YUD = YAHOO.util.Dom, className = "selected";
if (YUD.hasClass(element, className)){
YUD.removeClass(element, className);
} else {

YUD.addClass(element, className);

This version shows even greater savings after minification using the YUI Compressor (115 bytes):

MWIRAAEL N YUI JE46 8% SR A 2 Ja AR 58 /N (115 77

function toggle(a){var

c=YAHOO.util. Dom,b="selected";if(c.hasClass(a,b)){c.removeClass(a,b)}else{c.addClass(a,b)} };

The compaction ratio went from 33% to 48%, which is a staggering result given the small amount of work
needed. However, it is important to note that gzip compression, happening downstream, may yield conflicting
results; in other words, the smallest minified file may not always give the smallest gzipped file. That strange result
is a direct consequence of lowering the amount of redundancy in the original file. In addition, this kind of
microoptimization incurs a small runtime cost because variables are now used in place of literal values, thus
requiring additional lookups. Therefore, I usually recommend not abusing these techniques, although it may still
be worth considering them when serving content to user agents that don't support (or advertise their support for)

gzip compression.

JEAi N 33% 3N 48%, W BB TARMA R NS R . AR, ZE R RS0 gzip 48, TTRER
PR B AR o HARIIEUL, SRR SO FAN B4 i dR /M) gzip M4 SCPTF o XA B 45 R 2 FEAIR
JESCAFIIUAT RGN o BEAh, IXRBORAALIE BT — MR/ T 0, DUV AR AT Bk,
PrULT SN B R P, TR BN EI IR BOR, BARMIRST A A I AR SRR (B FRSL

FP) gzip KGR, EA TSR % ER .

In November 2009, Google released an even more advanced minification tool called the Closure Compiler
(http://code.google.com/closure/compiler/). This new tool goes further than the YUI Compressor when using its
advanced optimizations option. In this mode, the Closure Compiler is extremely aggressive in the ways that it
transforms code and renames symbols. Although it yields incredible savings, it requires the developer to be very
careful and to ensure that the output code works the same way as the input code. It also makes debugging more
difficult because almost all of the symbols are renamed. The Closure library does come with a Firebug extension,
named the
Closure Inspector (http://code.google.com/closure/compiler/docs/inspector.html), that provides a mapping
between the obfuscated symbols and the original symbols. Nevertheless, this extension is not available on
browsers other than Firefox, which may be a problem when debugging browser-specific code paths, and

debugging still remains harder than with other, less aggressive minification tools.

2009 7F 11 H, Google KAl T — Al 8 g 1T H 20 45 http://code.google.com/closure/compiler/
R TG YUT 4R 5020, 0l e A T o AR, Do G 2 LA RS 365 18 11y
XA IS ST 4. BARETE T HMLLVEE WIRAER, NS ZRIF R AR O LU CR g AR
i A NARTL S o IEAEAF RS WA, O LI FF S 84 1. BB PE LA Firebug 4
JE I kA, 4 M gEEHS (Closure Inspector)
(http://code.google.com/closure/compiler/docs/inspector.html), FfH24L T AL S 745 5 44 RUUATT 5 44 2 8]
xR . AR, XA RAREI T Firefox Z AMARINERE, T LAKE ARG 50 U 38 O 14 QRS oA 136 i A 1) L,
1M H A EEANIE 2 B 1 55 3 T HAHLG, Wil AR B A

Buildtime Versus Runtime Build Processes FF & i3 F& & B 4w 3 B F13E 4T B

Concatenation, preprocessing, and minification are steps that can take place either at buildtime or at runtime.

Runtime build processes are very useful during development, but generally are not recommended in a production

environment for scalability reasons. As a general rule for building high-performance applications, everything that

can be done at buildtime should not be done at runtime.

B, TR, ANEEIE A DG RN A,] IR AT N A A AEIT RO, e AT I B i AR R
WA, HE T RN AR AT o TP m P RN IR (0 — S I, U2
REMGAE G BRI S8 AR, A BRI AT I 4

Whereas Apache Ant is definitely an offline build program, the agile build tool presented toward the end of
this chapter represents a middle ground whereby the same tool can be used during development and to create the

final assets that will be used in a production environment.

Apache Ant JGBESE—FBEHLIT AR RLSF, AT R ML R D IT R TRAGR TPl L, [RFE) T AN
AT R G s W=, AT A

JavaScript Compression JavaScript FE48

When a web browser requests a resource, it usually sends an Accept-Encoding HTTP header (starting with
HTTP/1.1) to let the web server know what kinds of encoding transformations it supports. This information is
primarily used to allow a document to be compressed, enabling faster downloads and therefore a better user
experience. Possible values for the Accept-Encoding value tokens include: gzip, compress, deflate, and identity

(these values are registered by the Internet Assigned Numbers Authority, or IANA).

200 T Y A SR AN PRI, Bl R A%) Accept-Encoding] HTTP 3k (L HTTP/1.1 F45) 1kM
RS s SN TE AL S T SCHF I AR A o A B ST T AR VP SR e ASRAS SE D T B B2, AT e FH
AR5 . Accept-Encoding IR [/&: gzip, compress, deflate, Al identity (IXYE(E 24 7E LUK Mkt 7>

FCHLR CHT TANA) 3D

If the web server sees this header in the request, it will choose the most appropriate encoding method and

notify the web browser of its decision via the Content-Encoding HTTP header.

TR TR 55 #5701 SRRSO A BIX L6 Bk, BRI RRIE W 4% 7%, It Content-Encoding [

HTTP Sk v %25 .

gzip is by far the most popular encoding. It generally reduces the size of the payload by 70%, making it a
weapon of choice for improving the performance of a web application. Note that gzip compression should be used
primarily on text responses, including JavaScript files. Other file types, such as images or PDF files, should not be

gzipped, because they are already compressed and trying to compress them again is a waste of server resources.

gzip N2 H A7 S itAT 1 gnhdis =X e 1l nlE A 2y gD 2] 70%, R A i 9 0 P se A i
o VER gzip 46 e FE T SO, {UFE JavaScript 344, A SRR, & AT PDF SCHE, AN
AT gzip 1648, BUOyEICS L%, W i xR ga N SR sS4 vt i

If you use the Apache web server (by far the most popular), enabling gzip compression requires installing and
configuring either the mod_gzip module (for Apache 1.3 and available at

http://www.schroepl.net/projekte/mod_gzip/) or the mod_deflate module (for Apache 2).

L R4 A Apache W TTAR S5 2% CHATEHRATID » i gzip B4R ThAETT B35 FF 0 & mod_gzip FRER

CEI X} Apache 1.3, /T http://www.schroepl.net/projekte/mod _gzip/)k # mod_deflate FEEH (%[X} Apache 2),

Recent studies done independently by Yahoo! Search and Google have shown that roughly 15% of the content
delivered by large websites in the United States is served uncompressed. This is mostly due to a missing
Accept-Encoding HTTP header in the request, stripped by some corporate proxies, firewalls, or even PC security
software. Although gzip compression is an amazing tool for web developers, one must be mindful of this fact and
strive to write code as concisely as possible. Another technique is to serve alternate JavaScript content to users
who are not going to benefit from gzip compression but could benefit from a lighter experience (although users

should be given the choice to switch back to the full version).

H1 Yahoo!## 2 M1 Google M 756 Ji (¥ 55 B W ST], 5 B K2R A st SR 1 1) PN P AT R 2 15% AR 28t SR 4
KZ BN A LE R RIS H 5> Accept-Encoding (¥ HTTP sk, ‘e#i 28 A FRH, B kR, HL5 PC %A K
PEBRT o BAR gzip it —ME AN TUT R TR, AIGZ2ZF XN F, RE RS RERAE,
77— T AR SR JavaScript WA, AUIBSEANRER 28 T gzip [RARRIIT T, wT U] SE g 5 T 4
K CH A LLEFED e] SE 2 fRAS) o

To that effect, it is worth mentioning Packer (http://dean.edwards.name/packer/), a JavaScript minifier
developed by Dean Edwards. Packer is able to shrink JavaScript files beyond what the YUI Compressor can do.

Consider the following results on the jQuery library (version 1.3.2, available at http://www.jquery.com/):

Jpit, {HAGHEE] Packer (http:/dean.edwards.name/packer/), i Dean Edwards JF- A& [JavaScript 5%
T.H.. Packer % JavaScript H 4 REf% i YUT H 4 #5 (7K - &R 6T jQuery PRI R4 45 R (A 1.3.2,
AL http://www.jquery.com/) :

JQuery 120,180 bytes
jQuery + YUI Compressor 56,314 bytes
jQuery + Packer 39,351 bytes

Raw jQuery + gzip 34,987 bytes

jQuery + YUI Compressor + gzip 19,457 bytes

jQuery + Packer + gzip 19,228 bytes

After gzipping, running the jQuery library through Packer or the YUI Compressor yields very similar results.
However, files compressed using Packer incur a fixed runtime cost (about 200 to 300 milliseconds on my modern
laptop). Therefore, using the YUI Compressor in combination with gzipping always gives the best results.
However, Packer can be used with some success for users on slow lines that don't support gzip compression, for
whom the cost of unpacking is negligible compared to the cost of downloading large amounts of code. The only

downside to serving different JavaScript content to different users is increased QA costs.

23 gzip K42)5, jQuery LIS Packer B YUI FE4f d 7 A I 45 ARHAHIT . SR1fT, AEH Packer 4
SRR AN P ISAT IR (FEBR AR 5 20 AR s b K252 200 42 300 ==F0) o Mk, {11
YUI 45 gzip 456 i fegn i dE45 K. SR, Packer] FH T PIEAN iy 88 AN SCRF gzip 4R 00,
RGO 5 R B ERARRS (KA AR LU A AL o A [P S A] JavaScript (9ME— Gk 25 /2 J5 & 3
A3

Caching JavaScript Files Z24F JavaScript 34

Making HTTP components cacheable will greatly improve the experience of repeat visitors to your website.

As a concrete example, loading the Yahoo! home page (http://www.yahoo.com/) with a full cache requires 90%

fewer HTTP requests and 83% fewer bytes to download than with an empty cache. The round-trip time (the
clapsed time between the moment a page is requested and the firing of the onload event) goes from 2.4 seconds to
0.9 seconds (http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). Although caching is most often

used on images, it should be used on all static components, including JavaScript files.

A8 HTTP ZU0F AT 22478 RO e P P B0 10 W il B P P P AR o — AN BRI 742, 2 Yahoo! 32
T Chttp://www.yahoo.com/) , FIRMEFIZEAFANLL, A FZEAFH D 90%1) HTTP 175 KAl 83%(11 N 7
o AEIRIN IR TS SK GO JF 46 2 55— K onload F41) M 2.4 # £ 0.9 75
(http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). R F 2 F AT 2247, HE I 24 4 1 1]

T AHESNE L, B JavaScript (A

Web servers use the Expires HTTP response header to let clients know how long a resource can be cached.
The format is an absolute timestamp in RFC 1123 format. An example of its use is: Expires: Thu, 01 Dec 1994
16:00:00 GMT. To mark a response as "never expires," a web server sends an Expires date approximately one
year in the future from the time at which the response is sent. Web servers should never send Expires dates more

than one year in the future according to the HTTP 1.1 RFC (RFC 2616, section 14.21).

W LR 55 4548 Expires Wi BiA SC HTTP Skib % 5 s AE G2 A7 SR WIN] . &2 4> RFC 1123 #% 21
Za IS)k . 4. Expires: Thu, 01 Dec 1994 16:00:00 GMT . ELH4 i N AR SCHRC A <R AT, # T I)
25 28T LRI — AN TR] Ry i SR I 1A) 22 5 —4E 1) Expires %#&. #2#& HTTP 1.1 RFC (RFC 2616, 14.21 %)
MER, W TUHRSS 2% A I% IV Expires I [HIAN R I —4F .

If you use the Apache web server, the ExpiresDefault directive allows you to set an expiration date relative to

the current date. The following example applies this directive to images, JavaScript files, and CSS stylesheets:

W SR ARAE] Apache M 5UJIR5545%, ExpiresDefault $i5-4 FRVF R AR 24§ I [A) B8 B 1L I TR) . R i 451K
ItHe 4 H B F, JavaScript 3CfF, FI CSS FEA K

<FilesMatch "\.(jpgljpeg|png|gifljs|css/htm/htm])$">
ExpiresActive on
ExpiresDefault "access plus 1 year"

</FilesMatch>

Some web browsers, especially when running on mobile devices, may have limited caching capabilities. For
example, the Safari web browser on the iPhone does not cache a component if its size is greater than 25KB
uncompressed (see http://yuiblog.com/blog/2008/02/06/iphone-cacheability/) or 15KB for the iPhone 3.0 OS. In
those cases, it is relevant to consider a trade-off between the number of HTTP components and their cacheability

by splitting them into smaller chunks.

FELER] GO A, Rl R SRS S v IR A, T ReH 2B . 91101, iPhone 1) Safari JJ Y ds AN
RELRATAA I I T 25K 44t (AL http://yuiblog.com/blog/2008/02/06/iphone-cacheability/) , 7F iPhone 3.0
BAERSG EARERT 15K (EXFE0L R, MGTE HTTP 45 E A S NI T oArE, 2% Rl e/ ik
FARINEIEZ

You can also consider using client-side storage mechanisms if they are available, in which case the JavaScript

code must itself handle the expiration.

R ATRERITE, ARIE T LIS B3 i AL, ik JavaScript AURS B CORAE B .

Finally, another technique is the use of the HTML 5 offline application cache, implemented in Firefox 3.5,
Safari 4.0, and on the iPhone beginning with iPhone OS 2.1. This technology relies on a manifest file listing the
resources to be cached. The manifest file is declared by adding a manifest attribute to the <htmlI> tag (note the

use of the HTML 5 DOCTYPE):

eha, B FEARRMEH HTML 5 #4 NP7, ©Ee@ral FEss szl Firefox 3.5, Safari
4.0, M iPhone OS 2.1 FFURLAJG IIRRAS o BEEEARMAI T ANEC & SCHE, B H N M7 I Bt BERC & SC

{438 I <htmI>F5R 25 1K) manifest J& P (a4 1] HTML 5) DOCTYPE) -

<IDOCTYPE html>

<html manifest="demo.manifest">

The manifest file uses a special syntax to list offline resources and must be served using the
text/cache-manifest mime type. More information on offline web application caching can be found on the W3C

website at http://www.w3.org/TR/html5/offline.html.

I B S A R R LA Y B R s, A0 T text/cache-manifest $5 Hi ‘e I BEAARRTY . H LT 5

2 T 22 A7 (1045 S 2 0L W3C 1919356 http://www.w3.org/TR/html5/offline.html .

Working Around Caching Issues 35T 227F &) &%

Adequate cache control can really enhance the user experience, but it has a downside: when revving up your
application, you want to make sure your users get the latest version of the static content. This is accomplished by

renaming static resources whenever they change.

M GAF RN RS e AR, (e — ol N R n, IRA BRI 752
A A AR OB RS o IR T 0 Tl PO e A B U 0EA T B iy 44 S I

Most often, developers add a version or a build number to filenames. Others like to append a checksum.
Personally, I like to use a timestamp. This task can be automated using Ant. The following target takes care of

renaming JavaScript files by appending a timestamp in the form of yyyyMMddhhmm:

KEMBOT, FERE SRR I — AN R 5 BT K5 . A NGB M— M. M, &
BRI R . IEATS 7T Ant HBh5E . IR H ARARE I B I— yyyyMMddhhmm % 3 1] A
%44 JavaScript CPF:

—n:

<target name="js.copy">
<!-- Create the time stamp -->
<tstamp/>
<l-- Rename JavaScript files by appending a time stamp -->
<copy todir="$ {build.dir}">
<fileset dir="$ {src.dir}" includes="*js"/>
<globmapper from="%*.js" to="*-${DSTAMP}${TSTAMP} .js"/>

</copy>

</target>

Using a Content Delivery Network 1 F 3 2 4% 3% M

A content delivery network (CDN) is a network of computers distributed geographically across the Internet
that is responsible for delivering content to end users. The primary reasons for using a CDN are reliability,
scalability, and above all, performance. In fact, by serving content from the location closest to the user, CDNs are

able to dramatically decrease network latency.

WAL M 2% (CDN) S 34 R 0 A5 (T LN 4%, T8 DL M 97 5) B 8 40 ik N 4% 3] CDN
() FSE s R R T S, wI R, (HE FRER MR, S b, R E AT A E R T S B AR R
%%, CDN 1] AR K gD X 25 S IR o

Some large companies maintain their own CDN, but it is generally cost effective to use a third-party CDN
provider such as Akamai Technologies (http://www.akamai.com/) or Limelight Networks

(http://www.limelightnetworks.com/).

— LR A E YEYEATTH ALY CDN, {HIEFAFR 56 — 7 CDN &35 —4%, U1 Akamai £H

(http://www.akamai.com) =¥ Limelight %% Chttp://www.limelightnetworkds.com)

Switching to a CDN is usually a fairly simple code change and has the potential to dramatically improve

end-user response times.

D)3 CDN 3 H H 5 532 D AU, I AT RER O H 3 i e 2T) i 3

It is worth noting that the most popular JavaScript libraries are all accessible via a CDN. For example, the
YUI library is served directly from the Yahoo! network (server name is yui.yahooapis.com, details available at
http://developer.yahoo.com/yui/articles/hosting/), and jQuery, Dojo, Prototype, Script.aculo.us, MooTools, YUI,
and other libraries are all available directly via Google’s CDN (server name is ajax.googleapis.com, details

available at http://code.google.com/apis/ajaxlibs/).

AR R, FmAT Y JavaScript E#S T LB CDN Vi) 140, YUI B2\ Yahoo! M8k (R
%45 % J& yui.yahooapis.com, http://developer.yahoo.com/yui/articles/hosting/) . jQuery, Dojo, Prototype,
Script.aculo.us, MooTools, YUI, & HABZEHES A LI IS Google (1) CDN k1% (IR45#5 44 2

ajax.googleapis.com, http://code.google.com/apis/ajaxlibs/) -

Deploying JavaScript Resources #53 JavaScript %y

The deployment of JavaScript resources usually amounts to copying files to one or several remote hosts, and
also sometimes to running a set of shell commands on those hosts, especially when using a CDN, to distribute the

newly added files across the delivery network.

Pl JavaScript BE Y5 H 75 L UUSCE R — A sl AR L, A I AR TN EIS AT — shell v 24K,
R A CDN I, 3 A% 3 90 20 93 B oS iR S A o

Apache Ant gives you several options to copy files to remote servers. You could use the copy task to copy
files to a locally mounted filesystem, or you could use the optional FTP or SCP tasks. My personal preference is
to go directly to using the scp utility, which is available on all major platforms. Here is a very simple example

demonstrating this:

Apache Ant $2EE5 IR JLANE I T4 SO B B AR 554 b ARWT LG copy 1454 S0 i 31—
ANAHFER AR G, sCE A FTP 88 SCP AT 55 o A N B EEALH sep TR, BT FH-F 646
SR Rt AR R R AT

-]

<apply executable="scp" fail parallel="true">
<fileset dir="$ {build.dir}" includes="%.js"/>
<srcfile/>

<arg line="$ {live.server}:/var/www/html/"/>

</apply>

Finally, in order to execute shell commands on a remote host running the SSH daemon, you can use the
optional SSHEXEC task or simply invoke the ssh utility directly, as demonstrated in the following example, to

restart the Apache web server on a Unix host:

W, A TAEZREENL FIEAT shell 74 350 SSH k%S, FRATLMAE] SSHEXEC {145 1% Tt sl] Bt 15 $2
W ssh TH, IE4 R g+ A, 75 Unix EHLETE T Apache M LRSS

<exec executable="ssh" fail>

<arg line="$ {live.server}"/>

<arg line="sudo service httpd restart"/>

</exec>

Agile JavaScript Build Process R I5H) JavaScript JF & L2

Traditional build tools are great, but most web developers find them very cumbersome because it is necessary
to manually compile the solution after every single code change. Instead, it's preferable to just have to refresh the
browser window and skip the compilation step altogether. As a consequence, few web developers use the
techniques outlined in this chapter, resulting in applications or websites that perform poorly. Thankfully, it is
fairly simple to write a tool that combines all these advanced techniques, allowing web developers to work

efficiently while still getting the most performance out of their application.

PG T THRARSRK, (HRZ B BT RN A TIRIBRET RO AERRR G S Jm A BT G 1A R

o JTRNGIHE XN — M7k, Bl BA GV, BHRBGHN A E . PRk, JLT8A MOk

F A TE Z AMAHAR T BN R B sl R BUAE . SEIai2, 5 A grd RIRUsii) TH 2 fai i,
' SCVF I GUT R AE N IR PP Z ARG B AR L RE

smasher is a PHP5 application based on an internal tool used by Yahoo! Search. It combines multiple
JavaScript files, preprocesses them, and optionally minifies their content. It can be run from the command line, or
during development to handle web requests and automatically combine resources on the fly. The source code can

be found at http://github.com/jlecomte/smasher, and contains the following files:

smasher #& > PHPS W FHFEIT, FET Yahoo!$8 & I fli (1) — AW T H . ‘&5 324 JavaScript SCF,
TR EAT], RAETS ST AT BRI Sl DA ATIE1T, B 78 TP R R A Ab 2R) 003 R
H 57 YA A {E http:/github.com/jlecomte/smasher F#, {025 LL RN 0

smasher.php

Core file %031

smasher.xml

Configuration file Bt & 14

smasher

Command-line wrapper 72173} %%

smasher_web.php

Web server entry point P 5Tt 55 A [

smasher requires an XML configuration file containing the definition of the groups of files it will combine, as

well as some miscellaneous information about the system. Here is an example of what this file looks like:

smasher ity 2> XML Ft & SO 5 Ea IR SO E 3, DL 2 R AR SENAE B FIi2E A
SCAER) 7

<?xml version="1.0" encoding="utf-8"?>

<smasher>
<temp_dir>/tmp/</temp_dir>
<root_dir>/home/jlecomte/smasher/files/</root dir>
<java_bin>/usr/bin/java</java_bin>

<yuicompressor>/home/jlecomte/smasher/yuicompressor-2-4-2.jar</yuicompressor>

<group id="yui-core">

— —n"

<file type="css" src="reset.css" />

<file type="css" src="fonts.css" />

[l]

<file type="js" src="yahoo.js" />

—":

JS

"

<file type src="dom.js" />

ean

<file type="js" src="event.js" />

</group>

<group id="another-group">

<file type="js" src="foo.js" />

<file type="js" src="bar.js" />

<macro name="DEBUG" value="1" />

</group>

</smasher>

Each group element contains a set of JavaScript and/or CSS files. The root_dir top-level element contains the
path to the directory where these files can be found. Optionally, group elements can also contain a list of

preprocessing macro definitions.

B> group JLHEA T > JavaScript 5 CSS SCAFHE G % root_dir TH/ZIC R W& AR IX AT 42

group JUE I AT IE I LR AL & — DM FAL B E IR o

Once this configuration file has been saved, you can run smasher from the command line. If you run it
without any of the required parameters, it will display some usage information before exiting. The following

example shows how to combine, preprocess, and minify the core YUI JavaScript files:

o EUXANECE SO B OR, UKt] LAE Ay 2473247 smasher. WIARMRAIMER S 802178, EH/EIR
2 A s — 2 A e IR 78R 7] & 0F, TARH, R4 YUI M0 JavaScript S

$./smasher -¢ smasher.xml -g yui-core -t js

If all goes well, the output file can be found in the working directory, and is named after the group name
(yui-core in this example) followed by a timestamp and the appropriate file extension (e.g.,

yui-core-200907191539.js).

W —V)IEH, o DATE TAE H sk 20 SofF, emA& 7 UA LIk XM T4 yui-core) o TR
A AN TR BRI 4) SO R 4 (B, yui-core-200907191539.js) -

Similarly, you can use smasher to handle web requests during development by placing the file

smasher_web.php somewhere under your web server document root and by using a URL similar to this one:

[, ARAT LA smasher /5T A I RE A AREE I TSR, 5 301 smasher_web.php JECZE KR 99 5T 95 R
SCRSH, Al ISR FE) URL:

http://<host>/smasher web.php?conf=smasher.xml&group=yui-core&type=css&nominify

By using different URLs for your JavaScript and CSS assets during development and in production, it is now

possible to work efficiently while still getting the most performance out of the build process.

FETF AN b, AR JavaScript M1 CSS BEAE I AN F) URL, BLAEE W] IETF RO FE 2 AhaRAS

fEVERE.
Summary M4

The build and deployment process can have a tremendous impact on the performance of a JavaScript-based

application. The most important steps in this process are:
TFRANERE L R XS 3T TavaScript N HIRE P 0] L™ A EORSEm, s E 22 (0 J LA BRI T

» Combining JavaScript files to reduce the number of HTTP requests

&I JavaScript 3CPF, /> HTTP 153K 1)
» Minifying JavaScript files using the YUI Compressor

i YUI [k 445 55 %2 A R JavaScript SCAF
* Serving JavaScript files compressed (gzip encoding)

DL 48 T 32 4IE JavaScript SO (gzip Zafd)

» Making JavaScript files cacheable by setting the appropriate HTTP response headers and work around caching

issues by appending a timestamp to filenames
i B HTTP W AR SCLAE JavaScript SCPF AT 247, T [SO BRI N TR AR p S2 A7 1) il

* Using a Content Delivery Network to serve JavaScript files; not only will a CDN improve performance, it

should also manage compression and caching for you

i FH N AL 2% (CDN) #2443t JavaScript S0, CDN A AT LA m P fE, eid a] LY UREE BRI 4 F1 22
17

All these steps should be automated using publicly available build tools such as Apache Ant or using a custom
build tool tailored to your specific needs. If you make the build process work for you, you will be able to greatly

improve the performance of web applications or websites that require large amounts of JavaScript code.

PIATIX S IR 2 A 558 1 AR AT T A T H W Apache Ant, 2] H € ST A TR
PSR 38 T 5K o WERARAEIZEETT A TR IR ST, ART AR OK 5038 AR 2 KA] JavaScript £CAS) 14 5T
O 5 A s PO P

B+E Tools TH

Having the right software is essential for identifying bottlenecks in both the loading and running of scripts. A
number of browser vendors and large-scale websites have shared techniques and tools to help make the Web

faster and more efficient. This chapter focuses on some of the free tools available for:

AT E IA BRI AT I RS ERS, & TR T RELAT /D). VP2 RE) AR B M55 T
TR R, WOIT R ALT R GO, AR . AR TR 2 T AL

Profiling PERESHT
Timing various functions and operations during script execution to identify areas for optimization
TEBIAIEAT W2 I AT A I R ORI A, et R ZEOLA) i

Network analysis 4% #7

Examining the loading of images, stylesheets, and scripts and their effect on overall page load and rendering
A b, PR, AR RN R, RTINS A BT TN 43 RIVE G 1) 500

When a particular script or application is performing less than optimally, a profiler can help prioritize areas for

optimization. This can get tricky because of the range of supported browsers, but many vendors now provide a

profiler along with their debugging tools. In some cases, performance issues may be specific to a particular
browser; other times, the symptoms may occur across multiple browsers. Keep in mind that the optimizations
applied to one browser might benefit other browsers, but they might have the opposite effect as well. Rather than
assuming which functions or operations are slow, profilers ensure that optimization time is spent on the slowest

areas of the system that affect the most browsers.

AN E A SN R P A TE B PRSI, —AMEERE M & A7 Bl T 2 HROUAL ARS8 JE U0 o
A, DUOSER SCRFIVEEIANR, X] REARAHARRL, BVFZ] R AEAR AT S TR b 3R T R RE M
o ALEROLT, PEREMEN RE LR E N S AT 0%, JUARTE LR, XA AT AE HBLE 2N s . i i
£, FEAWYE BT T I PCA T REIE F T A RS, T e AR A SRR . PERE AT TR RO
WAL RAE R G fede, MR Z BN SR 7, AN 26 0 52 A0 L o B R A 22 1%

While the bulk of this chapter focuses on profiling tools, network analyzers can be highly effective in helping
to ensure that scripts and pages are loading and running as quickly as possible. Before diving into tweaking code,
you should be sure that all scripts and other assets are being loaded optimally. Image and stylesheet loading can
affect the loading of scripts, depending on how many concurrent requests the browser allows and how many assets

are being loaded.

BRARTERZ BN ORE TIERE T TR, S Z8 o0 TR W] DO i A s, DLl ORIAIA A 0T
1RSI RE PRI INBEEAT o ARV REACRD 2R, Nl DR AR LA B K i 8o A e fedbad 1. 1B A
FEAR B S AN, SXHOR T3 NES e VF 2 DI RAER, A7 2 D BRI 2N ak.

Some of these tools provide tips on how to improve the performance of web pages. Keep in mind that the best
way to interpret the information these tools provide is to learn more about the rationale behind the rules. As with

most rules, there are exceptions, and a deeper understanding of the rules allows you to know when to break them.

XHL)28 T AR T an U A R TR RE AR TR . VS ICAE, SR A XSS T AT S B, HE
N T XL JE B e IEARZHORN —HE, S BIANAE, RN AR S U8 54 i
SN NIVEPS TSR

JavaScript Profiling JavaScript Mg #T

The tool that comes with all JavaScript implementations is the language itself. Using the Date object, a
measurement can be taken at any given point in a script. Before other tools existed, this was a common way to
time script execution, and it is still occasionally useful. By default the Date object returns the current time, and
subtracting one Date instance from another gives the elapsed time in milliseconds. Consider the following
example, which compares creating elements from scratch with cloning from an existing element (see Chapter 3,

DOM Scripting):

VLT B PHAT JavaScript SEI-5 K, TERZHES H 5. A Data X5] LA A (AEAT &R 50 o AR
E T H B AT, WA AT I (02— Bl T B BUAETIR S AN 21 T8 %A1 Data 3% [0 24 Hir i 4],
SRIG IS oA Data {5 LAG 2 LLZERP 0 A7 BN T) 2 o 25 08N i i85, & R BT Bc =k M e oo
FEPTHIII] (2 WS =5, DOM %ife) :

var start = new Date(),
count = 10000,

i, element, time;

for (i=0; 1 < count; i++) {

element = document.createElement ('div');

—

time = new Date() - start;

alert('created ' + count +'in ' + time + 'ms');

start = new Date();
for (i=0,1<count; it++) {

element = element.cloneNode(false);

time = new Date() - start;

alert('created ' + count + ' in ' + time + 'ms');

This type of profiling is cumbersome to implement, as it requires manually instrumenting your own timing

code. A Timer object that handles the time calculations and stores the data would be a good next step.

PERPERE DT+ > BB, " ETahids g a3 . wl % XA Timer X5 AE PR 8] vH A7 IO 22
e R R

Var Timer = {

_data: {},

start: function(key) {

Timer. data[key] = new Date();

5

stop: function(key) {
var time = Timer._data[key];
if (time) {
Timer._data[key] = new Date() - time;
H
5,

getTime: function(key) {
return Timer. data[key];
H

)

Timer.start(‘createElement’);
for (1= 0; 1 < count; i++) {

element = document.createElement ('div');

—

Timer.stop(‘createElement");

alert('created ' + count + "in '+ Timer.getTime('createElement");

As you can see, this still requires manual instrumentation, but provides a pattern for building a pure JavaScript
profiler. By extending the Timer object concept, a profiler can be constructed that registers functions and

instruments them with timing code.

IEQRE B, PR e BT LA s, (HERAE 7 —NEEAL4E JavaScript PEREZHTAORE. MY
J& Timer X AW, —ANERE T T R LLAER I I e O FAE T I ARS i e AT

YUI Profiler YUI 4388

The YUI Profiler (http://developer.yahoo.com/yui/profiler/), contributed by Nicholas Zakas, is a JavaScript
profiler written in JavaScript. In addition to timer functionality, it provides interfaces for profiling functions,
objects, and constructors, as well as detailed reports of the profile data. It enables profiling across various

browsers and data exporting for more robust reporting and analysis.

YUI 73 #r#5 (http://developer.yahoo.com/yui/profiler/) , i Nicholas Zakas $2{1t, Jf&H] JavaScript 4”5 1
JavaScript /#7458 B TP DhRE, COSHRE T T RE MR MG TERE TR, IS AR RE
BB TR o AT DA NS AS AR, A R R T SR B R OK R AR A A

The YUI Profiler provides a generic timer that collects performance data. Profiler provides static methods for

starting and stopping named timings and retrieving profile data.

YUI 73 Mt dsbe i @ I as TSR PR RE R - Profiler 1241 SLF SRR HL, T T3 s 1E iy 44
SEI A%, BUORREME: RERHh -

var count = 10000, i, element;

Y .Profiler.start(‘createElement’);

for (i=0; 1 < count; i++) {

element = document.createElement ('div');

Y.Profiler.stop(‘createElement’);

alert('created ' + count + ' in ' + Y.Profiler.getAverage('createElement") + 'ms');

This clearly improves upon the inline Date and Timer approach and provides additional profile data regarding
the number of times called, as well as the average, minimum, and maximum times. This data is collected and can

be analyzed alongside other profile results.

R, ot 7 K Data A1 Timer J59%, $EAUASMAOVERESE WA A IREL, PRI Ta], s NTa],
FKIN RS o X SRR S e kT LU S IR 45 R R 5 20

Functions can be registered for profiling as well. The registered function is instrumented with code that
collects performance data. For example, to profile the global initUl method from Chapter 2, all that is required is

the name:

R BT I T B o M R Bl S I e s AR RS R o ol an, AT AR AR R A
initUT 777k, AT EAE N E 44 7

Y .Profiler.registerFunction("initUI");

Many functions are bound to objects in order to prevent pollution of the global namespace. Object methods can
be registered by passing the object in as the second argument to registerFunction. For example, assume an object
called uiTest that implements two initUl approaches as uiTest.testl and uiTest.test2. Each can be registered

individually:

VP2 AR SN G0 1), CABIIbys 44 e 24 0] . X %0775 n] LLE I reguisterFunction v/,
SR GAE N A HUE N BN, s —FRAE uiTest XSS T AN 775, 2054 uiTest.testl Fll

uiTest.test2, REAN LA AT DAL 7

Y .Profiler.registerFunction("test1", uiTest);

Y .Profiler.registerFunction("test2", uiTest);

This works well enough, but doesn't really scale for profiling many functions or an entire application. The

registerObject method automatically registers every method bound to the object:

— PR, H A REE N & 2 N BRI HFE T registerObject J5 v H 80 M5 & 205 1 4%

Y .Profiler.registerObject("uiTest", uiTest);

The first argument is the name of the object (for reporting purposes), and the second is the object itself. This

will instrument profiling for all of the uiTest methods.

B ASHRNGA T TS B oASERENEAS . EH T viTest FIFTH 7%,

Objects that rely on prototype inheritance need special handling. YUTI's profiler allows the registration of a

constructor function that will instrument all methods on all instances of the object:

HREE ST ZR A R0 G B IR AL B . YUT 23 A TR SR VEIE AL 3 2 pR 20, el AR OGS 5 1) i A s 491
R PTA T i

Y .Profiler.registerConstructor("MyWidget", myNameSpace);

Now every function on each instance of myNameSpace.MyWidget will be measured and reported on. An

individual report can be retrieved as an object:

BUAE, Prfi myNameSpace.MyWidget SR> o BCAORE BN B IFC AR o — DMIRSZ AR 5 T AR SR
XA IR :

var initUIReport = Y.Profiler.getReport("initUI");

This provides an object containing the profile data, including an array of points, which are the timings for each

call, in the order they were called. These points can be plotted and analyzed in other interesting ways to examine

the variations in time. This object has the following fields:

XA R — NS MBI R 5, B S A e R SR AL, AT SRR B e o X
(] i) T2 I B ARG (R VR AT 0 i, DRI o) AR A e SN S BAT I b 7B

{

min: 100,
max: 250,
calls: 5,
avg: 120,

points: [100, 200, 250, 110, 100]

Sometimes you may want only the value of a particular field. Static Profiler methods provide discrete data per

function or method:

AN PO I 3L By . S Profiler J5 V3@ SEAFAN o BT V5 W) B HUHC -

var uiTest1Report = {
calls: Y .Profiler.getCalls("uiTest.test1"),

avg: Y.Profiler.getAvg("uiTest.test1")

A view that highlights the slowest areas of the code is really what is needed in order to properly analyze a

script's performance. A report of all registered functions called on the object or constructor is also available:

— M RLE R s AR P R i (A, R B R BT IR RE I T o S5 Ah— S DI RE T i
X G BAE) 3 i P A (8 BT AT L A £ B 5

var uiTestReport = Y .Profiler.getReport("uiTest");

This returns an object with the following data:

IR A R B T B

{

testl: {
min: 100,
max: 250,
calls: 10,
avg: 120

s

test2:
min: 80,
max: 210,
calls: 10,

avg: 90

-~

This provides the opportunity to sort and view the data in more meaningful ways, allowing the slower areas of
the code to be scrutinized more closely. A full report of all of the current profile data can also be generated. This,
however, may contain useless information, such as functions that were called zero times or that are already
meeting performance expectations. In order to minimize this type of noise, an optional function can be passed in

to filter the data:

I AT BLHE R RABCR T SEAT R SR 5 5836 s, ARG mh i A8 (1 38 045 2 S DN KA o 3RS T AT 23
Bt i se s > S VF 2 AR R, W WIS A R B (M ek 2, B8 IR Le b e 22 ik B HUN R bx
MIRRE. N FRARR LTI, WA AN — DL FE R HOR L DS IX L Kl -

var fullReport = Y.Profiler.getFullReport(function(data) {

return (data.calls > 0 && data.avg > 5);

The Boolean value returned will indicate whether the function should be included in the report, allowing the

less interesting data to be suppressed.
FCR [m] R AT R B T4 H R O 77 B N BTS2, LA) H s e A i 4

When finished profiling, functions, objects, and constructors can be unregistered individually, clearing the

profile data:
IR, R G, ARG AN R, TE P Sl

Y .Profiler.unregisterFunction("initUT");
Y .Profiler.unregisterObject("uiTests");

Y .Profiler.unregisterConstructor("MyWidget");

The clear() method keeps the current profile registry but clears the associated data. This function can be called

individually per function or timing:
clear() Jy VAR B 4T 70 M HARVENPIRZS, ESBRANSCEE o 10 R B80T AERE A bR A o I v Fpf S -
Y .Profiler.clear("initUI");
Or all data may be cleared at once by omitting the name argument:
WERAMESEL, W A Bl e — IR 2L
Y .Profiler.clear();

Because it is in JSON format, the profile report data can be viewed in any number of ways. The simplest way

to view it is on a web page by outputting as HTML. It can also be sent to a server, where it can be stored in a

database for more robust reporting. This is especially useful when comparing various optimization techniques

across browsers.

UM A JSON 4% 5, BT ATl AT 2 M Jridie defil S AMA U REAE I T Bt) HTML . &
LR e AR RIS s, A ANEE A, DUSEBL S SRR IR T DhRE o 45 501 24 ELSAN[A] FR 5 30 2 s DL AL BRI
Rl A H o

It is worth noting that anonymous functions are especially troublesome for this type of profiler because there
is no name to report with. The YUI Profiler provides a mechanism for instrumenting anonymous functions,
allowing them to be profiled. Registering an anonymous function returns a wrapper function that can be called

instead of the anonymous function:

BT A LB A R BOEAEU T T O EIBcAT 47 YUL 3 32t 17— P Y B 44 e B il
FEAFEA AT LA T o TN A s IR [A ke R 5 R AR e i A A2 U P B 44 R 2

var instrumentedFunction =
Y .Profiler.instrument("anonymous1", function(numl, num2){

return numl + num?2;

s

instrumentedFunction(3, 5);

This adds the data for the anonymous function to the Profiler's result set, allowing it to be retrieved in the same

manner as other profile data:

"R B A BR R s N I 21 Profiler (IR 1A, FRIBCE K 7 0 HoAh o B s AR] -

var report = Y .Profiler.getReport("anonymous1");

Anonymous Functions B4 5%

Depending on the profiler, some data can be obscured by the use of anonymous functions or function
assignments. As this is a common pattern in JavaScript, many of the functions being profiled may be anonymous,

making it difficult or impossible to measure and analyze. The best way to enable profiling of anonymous

functions is to name them. Using pointers to object methods rather than closures will allow the broadest possible

profile coverage.

A8t e 44 R S50 PR K BE 4 38 13 20 T s RO BB A5k o e T3 2 JavaScript AOIE PR, VR0 HT I B8
BT REE AL 1, X EATTIEE AN 73 M AR R e SR AN TE 064 T o 20 W B 42 pR U B R M2 28 e T 447
fEHHREHE N R IE AR A, AL) 2 Kb .

Compare using an inline function:
LI Rl sk, b — AN] A G RR AL

myNode.onclick = function() {

myApp.loadData();

}5
with a method call:
=AM TR

myApp._onClick = function() {
myApp.loadData();

IR
myNode.onclick = myApp. onClick;

Using the method call allows any of the reviewed profilers to automatically instrument the onclick handler.

This is not always practical, as it may require significant refactoring in order to enable profiling.

A8 1 e& B0 HI AT A [M s B Sh i onclick fURg . XA B —FSEHRITTE, RO & RE /s 20T
AR BEAT KR TR -

For profilers that automatically instrument anonymous functions, adding an inline name makes the reports

more readable:

AT A AR e B S I A4 R AN —> Y IRAG B A 3 ot 5 I T i3

myNode.onclick = function myNodeClickHandler() {

myApp.loadData();

This also works with functions declared as variables, which some profilers have trouble gleaning a name from:

AR EOE O AR I WA A AIXM 7%, A 2 AT e 3 B BRI 2 2B R -

var onClick = function myNodeClickHandler() {

myApp.loadData();

The anonymous function is now named, providing most profilers with something meaningful to display along
with the profile results. These names require little effort to implement, and can even be inserted automatically as

part of a debug build process.

UhBE 2 R BIAE A 4 T AERZ R 1 0 I8 R Bos AT R N 7 . X2 4 AR L P AN 2
AR, i AT DOT IR AR TR A 3R A .

Firebug

Firefox is a popular browser with developers, partially due to the Firebug addon (available at
http://www.getfirebug.com/), which was developed initially by Joe Hewitt and is now maintained by the Mozilla
Foundation. This tool has increased the productivity of web developers worldwide by providing insights into code

that were never before possible.

X RN DKL, Firefox s MMM WA, #4502 Firebug 4fiff (http://www.getfirebug.com/)
i Joe Hewitt & AIILLE H Mozilla ZEG2s4id . bt T R EA AR RS EE T, $&5 17 a5 o
KRBT

Firebug provides a console for logging output, a traversable DOM tree of the current page, style information,

the ability to introspect DOM and JavaScript objects, and more. It also includes a profiler and network analyzer,

which will be the focus of this section. Firebug is also highly extensible, enabling custom panels to be easily

added.

Firebug $24t 7 — M 5hl 4 HEMH, 407 7im i DOM # 5o, #0508, A% M DOM Al JavaScript
X%, UMEZINRE. Cl i — MERRRINZ M ey, XA TE RS . Firebug % T4 8, nIdnAE
SR -

Console Panel Profiler #2414 R 217 5%

The Firebug Profiler is available as part of the Console panel (see Figure 10-1). It measures and reports on the
execution of JavaScript on the page. The report details each function that is called while the profiler is running,

providing highly accurate performance data and valuable insights into what may be causing scripts to run slowly.

Firebug 73 Bt & 42 & AR 1 — 37 (il 10-1) o el IR U8 AT ¥ JavaScripte 45317 48
IBATIN, IR RN SRRSO I s A Ay, R ptmos i M REBOR AR BER ThEE, (BT kil
AT BUHAZ T2 1) J5 I o

i - 1
5 i Console~ | HTML €S5 Script DOM Ner Q) 26 DHI
Clear. Profile |
— il :

Figure 10-1. FireBug Console panel

Kl 10-1 FireBug 2| & Mk

One way to run a profile is by clicking the Profile button, triggering the script, and clicking the Profile button
again to stop profiling. Figure 10-2 shows a typical report of the profile data. This includes Calls, the number of
times the function was called; Own Time, the time spent in the function itself; and Time, the overall time spent in
a function and any function it may have called. The profiling is instrumented at the browser chrome level, so there

is minimal overhead when profiling from the Console panel.

sifi Profile $Hl PR B 0 Hrid £, il A BAIAS, PRI ol Profile #28H ml 5 k3 Mo 181 10-2 s 17> dit
R B . B Calls: sOEMHIIIREG Own Time: s A SHIEATIEZ (N TH); Time: PR
FAEOR SN a), RAG e U K R 2T e 2 IR TR AT PERE > i ReAE S WA 2 R AT, BT DUz
& MRS 37 1 I P BRI A AR /N

* % i Consale> HTML CS3 Scipt DOM Met age Speed Fage Speed Acivity Yslow Q
Clear Profile
¥ Profile (451.709ms, 440673 calls)
|¢lﬂ_{“ﬂmﬂm Time | Ava Min Max | E T P—

u.!(j & 663 39, 106ms 43 89ms 43.89ms 43 88ms 43 EOms wombotme.0.1.32 js (line 8)
HEY 15I:| 7.31% $3.005ms 4. 76Fms. D.232ms G.009ms 30.7BEms arcade_0.1.98.js (line &)
hi} 3337 S.6EN M50BEms 25.5H8ms 0.008ms G00lms D30Ems arcade-s._0,1.0,s iline 2]
REY 143 37N IG,7E3ms 30.005ms 0.2 Ims 0 0RBms O.5Brms arcads 0,194,)% (lins 4)
ad_embedCh 1 36I% 16330ms 19.708ms 19.70Bms 18.70BEms LS FO&ms ad_eo_1.1Js iline 5]
hiy 67 1048 13TaEms 33.157ms O495ms 003Bms 3.71Ems arende—4~ 0L1.0.0¢ (line 21
hL) 1092 2 &88% L3 026ms 27.55%ms D025ms G.0L5mEs D.524ms arcade_0,1, 98,45 (line 4)
h{y 1104 2678 12076ms 12076ms O0.011lms 0.006ms 0.35ms arcade_0.1.98.]s (line 4]
) R2G0 Z2.54% LLAESms 11.46%9ms {0.002ms Q.00Lms O0ESms arcade 0.1.38.]s (line 4)
hE 2B6 2.47% LL153ms 35.0975ms OQ.l128ms 0.0dms 0333 ms arcade 0.1.98.)s (line 4)
r’ 74 Z.ALW 3, 74Bma 10.715%m3 D.01Tma Jma 0,313 Arend e — S, 0,100 (hine 21
hi) 2354 179% S084ms 27.905ms Dl2ms 0B0Tms 0.153ms arcade_0.1. 98 s (line &)
h) 207 1.75% O3 3ms 115 %2mx 0.55/ms G.023ms 14.992ms arcade_0.1.98.jx (line 4]
hEy 73 157% 7.0B4ms 71.896ms OD.98Sms .199ms 4.774ms arcade 0.1.98.js (line 4)

Figure 10-2. Firebug Profile panel

] 10-2 Firebug M AETIHR

Console API i API

Firebug also provides a JavaScript interface to start and stop the profiler. This allows more precise control
over which parts of the code are being measured. This also provides the option to name the report, which is

valuable when comparing various optimization techniques.

Firebug 4243t T JavaScript 4 1] T Sl MM (0 #r s o X0 RE A2 I 2 i A . it fe ik
Chir AR5, AE LEBAS R AL SR IR S AT 4

console.profile("regexTest");
regex Test(‘foobar’, 'foo");
console.profileEnd();

console.profile("indexOfTest");

indexOfTest('foobar’, 'foo');

console.profileEnd();

Starting and stopping the profiler at the more interesting moments minimizes side effects and clutter from other
scripts that may be running. One thing to keep in mind when invoking the profiler in this manner is that it does
add overhead to the script. This is primarily due to the time required to generate the report after calling
profileEnd(), which blocks subsequent execution until the report has been generated. Larger reports will take
longer to generate, and may benefit from wrapping the call to profileEnd() in a setTimeout, making the report

generation asynchronous and unblocking script execution.

FEDCHR G E R SR oA s, T gD B P A AAAs AT A I Bt T4 A — migiddE, ORI A
V3 M a2 B BA R IF8 . 22 B profileEnd() ity £ 46 2 IN [R) R AR e i, & BHZE IR 24T H.
PR AR RSSO 5 EE AR (AR AR, A ISR profileEnd() i JH 54 E setTimeout H,
At sty A R T DU D REA T 1 AN ZE A2 AT

After ending the profile, a new report is generated, showing how long each function took, the number of times
called, the percent of the total overhead, and other interesting data. This will provide insight as to where time

should be spent optimizing function speeds and minimizing calls.

IMTSERRZ IR, AERCT B aR Bos AR s O T T 2K TR, R R o BT
bh, AT FE OGRS o IX SRR DR AR B SO B, 3 R I R e g T K

>

o

Like the YUI Profiler, Firebug's console.time() function can help measure loops and other operations that the

profiler does not monitor. For example, the following times a small section of code containing a loop:

IE4 YUI 23 ¥4, Firebug [console.time() B £ By T s A A FN LA /3 AT 28 AN BRI AR I B o 8t
N B EE R AR BEAT I

console.time("cache node");
for (var box = document.getElementByld("box"),

1=0;

1<100; i++) {
value = parseFloat(box.style.left) + 10;
box.style.left = value + "px";
H

console.timeEnd("cache node");

After ending the timer, the time is output to the Console. This can be useful when comparing various
optimization approaches. Additional timings can be captured and logged to the Console, making it easy to analyze
results side by side. For example, to compare caching the node reference with caching a reference to the node's

style, all that is needed is to write the implementation and drop in the timing code:

AESEI A2 IR IRt B ST F RS SRR 7k . Bl T LU FE 1
MM LR, BUEACE SR () ABTEiR. DI, HBREAE T ol M 1 AR5 T, 7
S TN R S S

console.time("cache style");
for (var style = document.getElementByld("box").style,
1=0;
1< 100; i++) {
value = parseFloat(style.left) + 10;
style.left = value + "px";
H

console.timeEnd("cache style");

The Console API gives programmers the flexibility to instrument profiling code at various layers, and

consolidates the results into reports that can be analyzed in many interesting ways.

PG APTAERE PP B RE RS RE M i HIAS [Z X 2 U A, R GRS AEAR TS, 7T DUTVR 2 R
(KL T 73 M

Net Panel P4

Often when encountering performance issues, it is good to step back from your code and take a look at the
larger picture. Firebug provides a view of network assets in the Net panel (Figure 10-3). This panel provides a
visualization of the pauses between scripts and other assets, providing deeper insight into the effect the script is

having on the loading of other files and on the page in general.

HH, HIBBITERE R BN, S MU R EK, BHHERIE . Firebug 78 M 5 R &4 T
W2 BRI (] 10-3) o BEITARER AL T RIACRI Al B IR A AL IR, RN ER A AR I g SC A n gk
I PR S AT G 3 S) R i o

#‘ T | Consola HIWML 35 Soipr DOM Netv Pags Spesd Page Spesd Acthwity Yslow T

Clear - Al HTML C55 @B XHR images Flash
“ Het panel activated. Any requests while the aet panel is inactive aré not shown.

* CET ad_eo_L1js 4 CH1 M I.¥img.com 553 B | 10

* GET ad_eo_L.1.js i Bp | ¥lmg com 553 B | L9

* GET arcade-seed ih (bt | o o 5 KB I Fons

B GET be_2.0.4js # [iH I lmig com A50 R A

GET arcade_0.1.98 {i Cild Lyimg.com YT KE g G8ms

= GET comboTmetro Fir iR Lyimg.com 37 KE i T

. Erequests B e BIKE T

Figure 10-3. Firebug Net panel

10-3 Firebug M 4% [

The colored bars next to each asset break the loading life cycle into component phases (DNS lookup, waiting
for response, etc.). The first vertical line (which displays as blue) indicates when the page's DOMContentLoaded
event has fired. This event signals that the page's DOM tree is parsed and ready. The second vertical line (red)
indicates when the window's load event has fired, which means that the DOM is ready and all external assets have

completed loading. This gives a sense as to how much time is spent parsing and executing versus page rendering.

BN BEUE G T R OR IO R o il A B (DNS %66, SRrmay, 645) o —&mHLk (B
7N AT 45 H U ¥ DOMContentLoaded S A 8] o LA FR W GUTE (¥ DOM B CL 28 fif b JF-1E %%
U7 B4R RZ (L0 $5HH window] load FHF A I IA], &7k DOM CHE# 4 JF H T A Sk
PR OSSN XFEEGT TN, SRR AT AIE AT DL TS e T S A I 1)

As you can see in the figure, there are a number of scripts being downloaded. Based on the timeline, each
script appears to be waiting for the previous script prior to starting the next request. The simplest optimization to
improve loading performance is to reduce the number of requests, especially script and stylesheet requests, which
can block other assets and page rendering. When possible, combine all scripts into a single file in order to

minimize the total number of requests. This applies to stylesheets and images as well.

IEARLERI TR E RN, FETIRZ A fERRL L, A AR b 22855 i (A 5 588 8 F—
AR e P eI RE 1) e] BRI LA IR Rl DTSR BRI U SR, el e e
BRI GURNE G . WERTTREMITE, KA BIARS I — AN 30, BLdb B TSR B . X R iE xR
AP P [RIFEAT H o

Internet Explorer Developer Tools IE FF& A& T A

As of version &, Internet Explorer provides a development toolkit that includes a profiler. This toolkit is built
into IE 8, so no additional download or installation is required. Like Firebug, the IE profiler includes function
profiling and provides a detailed report that includes the number of calls, time spent, and other data points. It adds
the ability to view the report as a call tree, profile native functions, and export the profile data. Although it lacks a
network analyzer, the profiler can be supplemented with a generic tool such as Fiddler, which is outlined later in

this chapter. See http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx for more details.

Internet Explorer 8 &4/t M A T AW, W& Mothds. WTHRUNET IES, BrliAd 245
N B2k, 1R Firebug —#F, 1E 7 e G5 s B MrAnan 54l ity vl USRI R, JE SR Te], ik
AHeHdE S EREN LRI B N E I, s B IF S s . BARE B i as,
{E A Hr 2 o] A AR — AN] T B N Fiddler, ‘eOBAEARTER AN H. EEZ GBS

http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx

IE 8's Profiler can be found with the Developer Tools (Tools — Developer Tools). After pressing the Start
Profiling button, all subsequent JavaScript activity is monitored and profiled. Clicking Stop Profiling (same button,

new label) stops the profiler and generates a new report. By default, F5 starts the profiler and Shift-F5 ends it.

IE 8 (PR Mrde CPEETE: R SRR ™) mTLAETF R N TR RS CLASEH — JF
RNGITH) o fE# 1 Start Profiling #2482t : (U H SCRRBRATHGRC B0 Z), Brf a8

JavaScript i ZH #8250 #T . At Stop Profiling ([A]—AN&HL, FUe B ISCFERRBAR T) (EHTTE:
[R SR A B) R b AT IR AR AN FT IR A o BROADREERE S FS R 3h i s,

Shift-F5 {5 IF'E o

The report provides both a flat function view of the time and duration of each call and a tree view showing the
function call stack. The tree view allows you to walk through the call stack and identify slow code paths (see

Figure 10-4). The IE profiler will use the variable name when no name is available for the function.

A LIS T A AL, S RO I TR AR SE I) A — MRCIRRLIE, 2o T s o
Heo BRI A0 RT LA i 5396 1 F AR O 5 (7 th 2 e A RS K A2 (S ILIEL 10-4) o TE 3 s i A ek 2t
ARt 4 oK S B A PR

Flle Find Dissble Yiew Cutdne [msges Cache Tooks Validam
Browser Mode: 1E3 Compat View Documentiode! IE7 Standards = O X
HTML | €55 Isa:rut F'mﬁ“frl | Search Profiler
be] x| | SetPieing | Cumwvies [Cares =] [Fepor 1 -
Function | Cout| irchsivaTi = ||
i i = Funciion spply 2 306 25
I BHg 2 06 25
=1k 2 906 25
= Furction.call 2 90E 25
ER 2 G0E 26
=R 2 18429
= [Senpt - wendow somt block 2 18478
=1 Furchnn anfily s a84 1
= JScript - wirsdow scipt block 2 43433
=- Funclion apply & 42438
= updateficcessibilityidsg = 5428
= JScapt - window scripk 2 0408
= Funckaon.apgly 2 124 28
= [i T hishiiode 2
String follp. . 2

Figure 10-4. IE 8 Profiler call tree

K 10-4 1E 8 43 AT e i) 8 FH

The IE Profiler also provides insight into native JavaScript object methods. This allows you to profile native
objects in addition to implementation code, and makes it possible to do things such as compare String::indexOf

with RegExp::test for determining whether an HTML element's className property begins with a certain value:

IE 73 M ik] A2 S A= JavaScript AR 55 ARTT LS IR FHACRS SR BT R A0 5, I 4 e EL AR

String::indexOf Fll RegExp::test, H i€ —1 HTML JGE 1 className J& P& 7 AR (.

var count = 10000,
element = document.createElement_x('div'),

result, i, time;

element.className = 'foobar";

for (i=0; 1 < count; i++) {

result = /*foo/ test(element.className);

for (i=0; 1 < count; i++) {

result = element.className.search(/*foo/);

for (i=0; 1 < count; i++) {

result = (element.className.indexOf('foo') === 0);

As seen in Figure 10-5, there appears to be a wide variation in time between these various approaches. Keep in
mind that the average time of each call is zero. Native methods are generally the last place to look for
optimizations, but this can be an interesting experiment when comparing approaches. Also keep in mind that with

numbers this small, the results can be inconclusive due to rounding errors and system memory fluctuations.

W 10-5 s, XEEAN R iR IR TR 22 AR K. R, RO R FIma) 22 . R AR pR E0m
et JE Ay, (IR N R LA SE G . R E R, TR, ATREHR TR AR
ZERRFENAF SN CEAR M 45

File Find Disshle View Outline Images Cache Tools Validate |

Browser Mode: IE2 DocumentMode: IESStndzds = O X

HTHL |::55 ‘Empt F'mﬂ]al |S==ch Eroiil 2|
b |] 2| StatPofing | CumentView [Funcriors =] [Repaes =] =

Funcion | Count| Ewchasive Tmems) = | Awvg Tine jms] | Mas Time me] | Min Time (ms] | URL

iStongandex0F 20,000 1562 000 16.E3 .00

RegEsptest 30000 9375 000 1563 2.00

Sting.search 30000 125.00 000 1563 2.00

Figure 10-5. Profile results for native methods

10-5 J A= 5220 50 B 5 S

Although the IE Profiler does not currently offer a JavaScript API, it does have a console API with logging
capabilities. This can be leveraged to port the console.time() and console.timeEnd() functions over from Firebug,

allowing the same tests to run in IE.

HARTE 73 M4 H AT AFEAE JavaSeript (1) APT, (H &7 — A2 A H A DI RERIE$ 55 APL. 1] LK console.time()
Al console.timeEnd() B AL Firebug FAEATIE K, MIMAE IE FREAT [FIFE AL

if (console && !console.time) {
console._timers = {};
console.time = function(name) {
console._timers[name] = new Date();

b

console.timeEnd = function(name) {
var time = new Date() - console._timers[name];

console.info(name +": ' + time + 'ms');

-~

Safari Web Inspector Safari T2 i< s

Safari, as of version 4, provides a profiler in addition to other tools, including a network analyzer, as part of its
bundled Web Inspector. Like the Internet Explorer Developer Tools, the Web Inspector profiles native functions
and provides an expandable call tree. It also includes a Firebug-like console API with profiling functionality, and

a Resource panel for network analysis.

Safari 4 $2 (it 70 ds 55 TH, WM TS, EAEN MU &4 1K —#84r. 1EW0 Internet Explorer JF
RN G EBIRRE, W GUR A as A] Loy A7 J5 2 e ORI — A rT LURTT I IR (LD o ek fdli—A 2K
Bl Firebug HA M DI RENIFEHI & APL, M4/ BT as il A — N BER IR .

To access the Web Inspector, first make sure that the Develop menu is available. The Develop menu can be
enabled by opening Preferences — Advanced and checking the "Show Develop menu in menu bar" box. The Web

Inspector is then available under Develop — Show Web Inspector (or the keyboard shortcut Option-Command-I).

B I P RS A A%, T 56 Develop L& 15 1] H o A8 i Preferences — Advanced > L4, 1% W1/
SRR ORI AR . AR JE 1T L Develop — Show Web Inspector 1 9 A Ar #y CRERTPRAE Ay 202

Option-Command-I) .

Profiles Panel MR

Clicking the Profile button brings up the Profile panel (Figure 10-6). Click the Enable Profiling button to
enable the Profiles panel. To start profiling, click the Start Profiling button (the dark circle in the lower right).

Click Stop Profiling (same button, now red) to stop the profile and show the report.

it Profile FHLFT JF 23 M IRIRR (P8l 10-6) o fidd Enable Profiling #4413 F 23 M HiI M » £id7 Start Profiling
FITUR0HT (A R 7S (ol 1) o Sy Stop Profiling CA]—AN%4H, BIZER AT 15 1EHT I iR

e
o

e .F‘I.II'Id:IlJI'I

B.305

b.305 1 [prag vl

59.176m: 50.338Bmsg 18.725ms 3 ¥ ser_cookie
S 30dms SRAZdms 28152ms 2 ¥ lanovymans funcrion b g
56.304ms S6.424ms 28.152ms FJ TH combe. T
56.304ms 56.424ms 28.152ms 2 Fianonymaus function) tombo 150
5630 ms 56.424ms | 28152ms 2 {pragram|

1.872me 2.914ms 28Tims 1 ® (anawwmaous Functiond cormbha 4
58.071ms BOIFIME LAISMS iz w getBuddyinfo
5807 1rms BO.3%3Ims 1.815ms 12 ¥l Lamba 6
58.07 Lrns BO.3%3ms La15ms i ¥ faronymous funchionk sarmbg T4
5807 Lrns B0.393 ms LA15ms 12 Fa phmkia .l
C8.071rms B0.393ms LEISms 32 LiS comna 1}
SH.07 Lrms BO.3%3ms LAlSms i1 ¥ |ara rymous funch,, comba 19
SH.O7 Lms RO5%3ms LE1Sms 32 ¥ [anonymous fu. , Comno 49
58.071ms 0,393 ms 1.815ms iz ¥ (anomymaus .. combo T
SE.O7 Lms B0.39%3ms L8159 it vy cowndig (o
58.071ms BD0.393ms 1.815ms 12 ¥ (program)
5E.071ms ED.203ms LA15ms 32 [programi
5277 1ms 52.77Lms b2t dms 181 b evaluaia
31.203ms FL3I62ms 15 601ms 2 k sendscbscribe

29.163ms 29.163ms T435ms 67 w anpendC hild

Figure 10-6. Safari Web Inspector Profile panel

K] 10-6 Safari [19 TURE A 85 20 BT AR

Safari has emulated Firebug's JavaScript API (console.profile(), console.time(), etc.) in order to start and stop
profiling programmatically. The functionality is the same as Firebug's, allowing you to name reports and timings

for better profile management.

Safari #%1Jj T Firebug] JavaScript API (console.profile(), console.time(), %%%%) , W] LLHRER A 8 F1{E
1L AT DiRE. MEDhREYS Firebug M58 AHE, SRVFROTHR RNV 2547 fiy 44 DABRAIL B 47 1) 3 A 45 B

Safari provides both a Heavy (bottom-up) view of the profiled functions and a Tree (top-down) view of the
call stack. The default Heavy view sorts the slowest functions first and allows traversal up the call stack, whereas
the Tree view allows drilling from the top down into the execution path of the code from the outermost caller.
Analyzing the call tree can help uncover more subtle performance issues related to how one function might be

calling another.

Safari #2417 —NEALE iR B> MR 8o, AR B D TR AR B
WA AL B R d 1) e BRI, R SRVt D TR, oA A m A B A st AR A 2 U A AR £
IBATERAR . AT A AT B 48 8 5 el 50 P 5 A A G IR P R) 7L

Safari has also added support for a property called displayName for profiling purposes. This provides a way

to add names to anonymous functions that will be used in the report output. Consider the following function

assigned to the variable foo:

Safari N T — 40 displayName fRJ& L% 200 H 0. @8t 17— MOy A7 s 2e i i o
IINARKIIE . 518N XA 2322 & foo (1 pR 4L

var foo = function() {

return 'foo!";
¥
console.profile(' Anonymous Function');
foo();

console.profileEnd();

As shown in Figure 10-7, the resulting profile report is difficult to understand because of the lack of function

names. Clicking on the URL to the right of the function shows the function in the context of the source code.

Wik 10-7 Fros, A ED R B4, ik LB AR . 50 pR BOA TN URL RLYRERS 75 05 R BN

T't ¥ Total | Awerage Calls Function i
B Anonyimaous Foncticn La7% 1.42% 1 {anorymous function) anap hrmkE

Figure 10-7. Web Inspector Profile panel showing anonymous function
P 10-7 99 BRe: 8 14 20 A T AR 7 P 44 bR K

Adding a displayName will make the report readable. This also allows for more descriptive names that are not

limited to valid function names.

W IN— displayName J& VA1 5 A2 A3 T 1. WS N S0 BAT $38 3 U 44 7 T AN BR T PR 44

var foo = function() {
return 'foo!";

¥

foo.displayName = 'T am foo';

As shown in Figure 10-8, the displayName now replaces the anonymous function. However, this property is
available only in Webkit-based browsers. It also requires refactoring of truly anonymous functions, which is not
advised. As discussed earlier, adding the name inline is the simplest way to name anonymous functions, and this
approach works with other profilers:

VS

W1kl 10-8 i, displayName IUAEHUA 1 e 4% s 8. (H, BRJB PR OGEH] 195 T Webkit 0 a5 . &
EEORFMFE R A R B, BT AR BOX AG IE QAT I TR (0, 78 0 A IBCAS B2 i 44 B 44 B B
(T 0 SR T S AT 02 7wl N

var foo = function foo() {

return 'foo!";

Total | Awerage | | Function

273 | 2.73% | | tamfoo gnoghtmlE

o !. | | Heavy (Bottom Up) & | O X & (. -

Figure 10-8. Web Inspector Profile panel showing displayName
Kl 10-8 W UK A 2 1 23 B A 2 7 T displayName &

Resources Panel % JF TR

The Resources panel helps you better understand how Safari is loading and parsing scripts and other external
assets. Like Firebug's Net panel, it provides a view of the resources, showing when a request was initiated and
how long it took. Assets are conveniently color-coded to enhance readability. Web Inspector's Resources panel

separates the size charting from time, minimizing the visual noise (see Figure 10-9).

DRUS AR RT3 B S L PR Safari JIACRIARAT IAS LUK A AR B 1)5 2o B Firebug ¥ #4451
B ERRAE T AR, SR AN TSR AL E R T 2 KIS LU R s LA {8
S W UUR A 2 1 BRI I CRE RO R S I TR I, 4/ TR B3 CanlE 10-9)

GRAPHS

@ ime
1:[] Siam 4,595 Lils 00z 2.3Bs

RESDOURCES 3.0 B \LEZ 1576 19.70s 1.4 27.56 31.52s

q:_—_EJ hitp: ¢ fmowaew yahoo oom)/ Y

Documents B Styles heests Images Seripts

| | ancade 0.1.3.c85
1220 Ayl oo st iibase -

| -] combe !

| 58] | yimy coanis b

|| ad_ee_r.ays

& |.-.4mgmli|w1-.ﬁmrmm..,= =

:| page_ba_slate 070609 gif -

| o g com) fites) ety late

il
| e &
] o_loga_us 061509.p... -
wirmy comy alfi i fmek

| : Espﬂ' slate_D62209. i
i imp.conea s menith elars. |

| =| arcade-seed 0.1.0.45
== | Lyimeg comiaflibfare

U]

Figure 10-9. Safari Resources panel

K 10-9 Safari [1117% 5 i Hi

Notice that unlike some browsers, Safari 4 is loading scripts in parallel and not blocking. Safari gets around
the blocking requirement by ensuring that the scripts execute in the proper order. Keep in mind that this only
applies to scripts initially embedded in HTML at load; dynamically added scripts block neither loading nor

execution (see Chapter 1).

TR, ABIELERYLEIRE, Safari 4 BEWS AT INBATT AN HAHBHZE . Safari Zgid #eBH 2E (K11 5K
A ORAASAZ IR E B U T o WEICAE, X DGE T HTML DN A KR LERIE AT, ZhA i
BIATA N, BASYEET (S WH—FD

Chrome Developer Tools Chrome FF R AR T A

Google has also provided a set of development tools for its Chrome browser, some of which are based on the
WebKit/Safari Web Inspector. In addition to the Resources panel for monitoring network traffic, Chrome adds a
Timeline view of all page and network events. Chrome includes the Web Inspector Profiles panel, and adds the
ability to take "heap" snapshots of the current memory. As with Safari, Chrome profiles native functions and

implements the Firebug Console AP, including console.profile and console.time.

Google t1 4 &/ #) Chrome WA $& ML T —FBIF K TR, —LILT WebKit/Safari W itk A ds. Br T
PR I 24 3 () R YR TR 2 b, Chrome Sk BT AT UL IHTAI Y 28 SE A0S I T — NI TR A0 18] o Chrome A3 75 9 17T
KA I BT AR, 3800 7R i HE N AR P D g . 1R 40 Safari BFE, Chrome REWS 73 H7 J5L A= pR BT 5K

LT Firebug M55 API, {U4% console.profile Al console.time.

As shown in Figure 10-10, the Timeline panel provides an overview of all activities, categorized as either
"Loading", "Scripting," or "Rendering". This enables developers to quickly focus on the slowest aspects of the
system. Some events contain a subtree of other event rows, which can be expanded or hidden for more or less

detail in the Records view.

Wik 10-10 Prow, I IR L 0L T RTAT i sh (RO, 422800 70 g nade, “BA”, seE gy, X AEf
TFRN GAT AR E A R S8 e R 1 B o B8R S AT 0 70, AEIR S RL I T LU T
o Bk LA k7 BE 2 /D (R 4R 1Y

TIMELINES
Loading
 Seripting
B Rendering

RECORDS #Eix i s il 18 EREE i THs 3 40 1 53x 3 Bl ok
B Faint 377 % 11) ™ n
2 Timer Fired {195]

. 8 Faint 1171 = 43) =] |
i Send Request ... @ i
& Send Request (... 7

@ Timer Fired (223) | [S f
@ Layout]
@ Paint 1863 =407}]
3 Timer Fired (224

@ Send Requesty...

i send Request [

& Send Request

n':u_-_ Fread FT@CE

"R RN

b 4T

T WAt ';ahmmmf .l'm.uw ﬂll:h.mmf

Figure 10-10. Chrome Developer Tools Timeline panel

Kl 10-10 Chrome F /& T-H [[a] £ fi i

Clicking the eye icon on Chromes Profiles panel takes a snapshot of the current JavaScript memory heap
(Figure 10-11). The results are grouped by constructor, and can be expanded to show each instance. Snapshots can
be compared using the "Compared to Snapshot" option at the bottom of the Profiles panel. The +/- Count and Size

columns show the differences between snapshots.

#iiti Chrome 23 B AR b RIS AR, W 3RAS 2 HT JavaScript HE N AF P (& 10-11) o Hgh By
AL, LA IFEEE RS o PR nT Al P RE T RO S < LU A R B IR DR AT LR . A+ 1
Count 41 F1 Size #1| \Eo PRI 2 0] (1) 22 7 o

Constructor

B (Cinoe)

| 3900 | 3.473MB

* String 20804 | 974,39 i

® (An0nyMoUs) 47 | 207.75..] 0B |

® Object 086 | 202.54... W 08

& Array 1713 | 130.92.. 1 08 |

* Funciion 1870 I 59.17KE 1] il

T et ® (global property) 7428 | sm.03KE b oe |

— o | b HTMLDIvEE ment 978 | 1L.48M8] 08 |

L SRR+ et 425| 5 9BKE b oa

b HTMLElement 9| BEINE W o8 |

J snn:nshnt 2 » RegExp 188 | B35KE b UB |

LS Vaadk BMAL cF TANRTFL |) |y TabdeCaliEle ment 344 | B.OEHB B 0B |
]| Saapshot 3 # HTMLDGEsmen 12| G4EKE (] (R

08| Ucad FME of 1AME [40T8}

Objects and Dala @
2655MB

0 x= e o Compared to Snapshot 1 & 94 Bl AZ .

Figure 10-11. Chrome Developer Tools JavaScript heap snapshot

K] 10-11 Chrome F¥ & A 5 T B f#) JavaScript HE Py A7 P

Script Blocking il A<PH 22

Traditionally, browsers limit script requests to one at a time. This is done to manage dependencies between
files. As long as a file that depends on another comes later in the source, it will be guaranteed to have its
dependencies ready prior to execution. The gaps between scripts may indicate script blocking. Newer browsers
such as Safari 4, IE 8, Firefox 3.5, and Chrome have addressed this by allowing parallel downloading of scripts
but blocking execution, to ensure dependencies are ready. Although this allows the assets to download more

quickly, page rendering is still blocked until all scripts have executed.

g b, WA BE R — AT SR o IR T8 SO 2 T LR G R e NSO
T 57— ANAEBEE RS RSO, S TS SO R ORUEAE BB AT T ARHE R o AR 2 TP 22 B W
AYEPRZE T o B Wi A% 1% Wi Safari 4, 1E 8, Firefox 3.5, il Chrome fifBRIX A) # [F) I3t f RVFIFAT Nk,
HEHZERIZTT, DARERGUA DA ir 1 BRI B M aCEtk, sUiERIIH <2, B2l
TA R INAT -

Script blocking may be compounded by slow initialization in one or more files, which could be worthy of
some profiling, and potentially optimizing or refactoring. The loading of scripts can slow or stop the rendering of
the page, leaving the user waiting. Network analysis tools can help identify and optimize gaps in the loading of
assets. Visualizing these gaps in the delivery of scripts gives an idea as to which scripts are slower to execute.
Such scripts may be worth deferring until after the page has rendered, or possibly optimizing or refactoring to

reduce the execution time.

FRIAS B ZEH DA D — A A SO AR A S 18 i A2 A5 S0 ™ 1, (A X e MO L M K o iy, IFAT vl REAL
AL o BIA N B e el M B LB TS e, 3 B A5 . M2 M T RAT B TR I N Bt 2
ZEE . VLB SR AR A IN (R 2252,] SRR AT R i A A o X LU JRIAS B VR I A2 450 21 0T I
Qe e PN, B AT REDAL B A LA D Is AT I 1] o

Page Speed

Page Speed is a tool initially developed for internal use at Google and later released as a Firebug addon that,
like Firebug's Net panel, provides information about the resources being loaded on a web page. However, in
addition to load time and HTTP status, it shows the amount of time spent parsing and executing JavaScript,
identifies deferrable scripts, and reports on functions that aren't being used. This is valuable information that can
help identify areas for further investigation, optimization, and possible refactoring. Visit

http://code.google.com/speed/page-speed/ for installation instructions and other product details.

Page Speed]/ Google P JF R FTAE I —A T H, J5RAEN Firebug ffifh KA, 1% Firebug 1]/ 4%
TR R 1 oG T DR SR N5 2. AR, BR 1INt B A HTTP RAS, ‘&34 oK JavaScript il
HMESAT PSR (I), 48 H 3 IR AT, TR S IS e AT AT T (R e B XA e {E 45 S5 P 385 B
SEME DA TR, Ak, DL ATREE A . Uiln) http://code.google.com/speed/page-speed/ T2 J
At ity 40

P

The Profile Deferrable JavaScript option, available on the Page Speed panel, identifies files that can be
deferred or broken up in order to deliver a smaller initial payload. Often, very little of the script running on a page
is required to render the initial view. In Figure 10-12 you can see that a majority of the code being loaded is not
used prior to the window's load event firing. Deferring code that isn't being used right away allows the initial page

to load much faster. Scripts and other assets can then be selectively loaded later as needed.

Page Speed [iAR {170 T 4EIR JavaScript 2635, $i HH WS LE ST] 3 B SE IR 5 T LLR 20 24— NN
aEAC AT o JEH, O AT A D EEE AT . AR 10-12 R RT LR B, KA AR N
ZJiis ASAE window K i load A Z BB E] . SEIR O XEEA S L2 H 2 AU AT A3 H1 40 1k
DU RE PR . W RGBT, AL E B T DA R PR 5

»
* =Kl Contmle HTME €55 Script DOM Ner Page Speedv Page Spasd Acuvity

Analyze Performance Show Resuurces Help

—— =

mmmmi e AR N el e b T e S PR e i A M e
i &

& ™ Combine external JavaScript
& ¥ Defer loading of JavaScript

98.4% of the JavaScript Ioaded by this page had not been invoked by the time the onload
handler completed. (Cached Result)

= hetp: ff mwaw.yahoo.com 39 furctions uncalled of 41 votal functions. (Teggle Function
Wiew)

& hetp://Lyimg.com/a/lib/arc/arcede_0.1.98.js 716 functions uncalled of 733 total
funcrions. (Teggle Function View)

* combo?metro/uiplugins /autohide_service_0.1.5 jsdme... 551 functions uncalled of 552
total functions, (Toggle Function Wisw)

Figure 10-12. Page Speed deferrable JavaScript summary

K] 10-12 Page Speed HJAEIR JavaScript i\ 4

Page Speed also adds a Page Speed Activity panel to Firebug. This panel is similar to Firebug's own Net panel,
except that it provides more granular data about each request. This includes a breakdown of each script's life cycle,
including parse and execution phases, giving a detailed account of the gaps between scripts. This can help identify
areas where profiling and possible refactoring of the files are needed. As seen in the legend, Figure 10-13 shows
the amount of time spent parsing the script in red and the time executing in blue. A long execution time may be

worth looking into more closely with a profiler.

Page Speed &2 Firebug 34111 7> DT IHHE BTG SN IR PEIIBRRBL T Firebug A LML IR, AL
N EFNESRERAE T SOIRS 4n i Kt o b A R A AR dy I ge vt e th—— i s AT iir B, @i 7
JRVAS 22 T IR 1) 22 5 B PR AR T o AT B T 0 MR 28 XSO AE 75 BRSO T MK LSS0 o IE W it 1)
10-13 5795 200 (10 BRVAS A A IS T RS € R 32 4T I 8] o S A7 IR TR A (R JBAAS B s BB AT 20 BT SR AR 9

' U (onsnie HIML (S5 Soipt DOM Net Pagespeed Page peed Actwityw |©
| Record =iep Show Uncalled Functions Show Delsyabls Furctions

RL ; O | | L200rms
£k = -:ﬂ
Jeust frenbe fucs = H

No-HTTE rReDLTas:

Firafo Javazcript t . o
B Connectionfifsit [l DS Cornadt _ Comneclad B Sand
B Receie B CacheHit @ Db Avalshle @l 15Parse [15 Ewecute

Figure 10-13. Page Speed parse and execution times

1-=13 Page Speed Mf#HT FIZ4T I} 7]

There may be significant time spent parsing and initializing scripts that are not being used until after the page

has rendered. The Page Speed Activity panel can also provide a report on which functions were not called at all

and which functions may be delayable, based on the time they were parsed versus the time they were first called

(Figure 10-14).

A REA KR I AL B AE AR AT AN AR AL BRA b, T X S JAUACAE e e 2 I e T 21 o T S5 Sl 4 1
LGS PR 4 IR R B AT i T o, WO bR BT USRI, 5 e TR A AT it TR LA E AT T2

—IRBH AT CanEl 10-14) .

1sge Spaed Activiey

Delagshle | Init Time

| T 10| x

Fist Inwosstion | Name.

ISEHIE;

|File. @

312 m=
312 ms
212 ms
212 ms

24T e

JPage Spead

70 m=
Fal ms
7ol ms

a0 ms
TEO rre

1052 ms
1052 me
1052 ms
1052 ms

12 e

o,
M.
OOV
0O

Activity - Uncalled Functions

fimction (d, 3,) { varei=0,.. kg =]
function (c, d, 8) 4 C=C==4%l. hmsf.
furnction {a) { return Ha & .. http:;".f...J
function () { var b = argumerts... hitpede

fewtimn Fa BT rah ro Maarh s Bt - 8

Int Time | Nams Source | File |=
790 i evalSoriot function evalSoriptl, a) 4 if {a.src) § Doajas[url.. b/, =
TS0 e nLim functon numa, by £ retam 3[0] 88 parselntiD cwrCSS... Mg /fw.., =
TS e aronymous functon 0 { if (D.sReady) { refurm;]- ot e
50 e aronymous funcoon O if (D.i5Ready) { PRI, 3 N g iR
70 e ANOHYITIDUE function) { if (. isfeaoy) { returmn; } o it
S0 e bind~eady functon bind=eady() 4 (RCAE] return; oo e
TS0 ms Arimymous furcton) { retrn thislengih; 3 bkt e
== ArCHYTIoUE function (3) 4 refien 3 == undefined 7 Dnmakedrrayhi.. Bt
TS0 ms ANONYmous funcuon o) 4 ¥var 3 =0ib); a.prevCbiect = thig; .. b e ;1

Figure 10-14. Reports for delayable and uncalled functions

10-14 7] ZEiR pRECRIA 14 FH bR B0 i st

These reports show the amount of time spent initializing the function that are either never called or that could

be called later. Consider refactoring code to remove uncalled functions and to defer code that isn't needed during

the initial render and setup phase.

AR s 7SS MRS AL e L A2 W P) o) e P B T 80 e TR o 2% 8 A A R A A

SRR TR K, I BGRB8 SEAE T AGTE RN BT BUH A 24T .

Fiddler

Fiddler is an HTTP debugging proxy that examines the assets coming over the wire and helps identify any
loading bottlenecks. Created by Eric Lawrence, this is a general purpose network analysis tool for Windows that

provides detailed reports on any browser or web request. Visit http://www.fiddler2.com/fiddler2/ for installation

and other information.

Fiddler &—> HTTP i/ CH, A wfe gttty il, LUEM A0, & W Eric Lawrence ()%,
&4 Windows il FH #2520 M1 T B, w] A4 o0 W s B0 i Sk 4 e i e o L2 dE It e fE B S

UL http://www fiddler2.com/fiddler2/.

During installation, Fiddler automatically integrates with IE and Firefox. A button is added to the IE toolbar,
and an entry is added under Firefox's Tools menu. Fiddler can also be started manually. Any browser or
application that makes web requests can be analyzed. While running, all WinINET traffic is routed through
Fiddler, allowing it to monitor and analyze the performance of downloaded assets. Some browsers (e.g., Opera
and Safari) do not use WinINET, but they will detect the Fiddler proxy automatically, provided that it is running
prior to launching the browser. Any program that allows for proxy settings can be manually run through Fiddler

by pointing it at the Fiddler proxy (127.0.0.1, port: 8888).

{E2 %GR, Fiddler 5 IE Fl Firefox HZ4EM. TE THAL LIS IN—AM%4, Firefox [T HZH
KA. Fiddler 380 LAT- TR Bl AR SLas sN HRE P AR 10 P T RABREWS 7047 . et
[}, BT WinINET S5 #5@ad Fiddler JEAT#K h, SeVie MIF /T 0605 R bkfl . JELbnibass (il
Opera 1 Safari) AMEH WinINET, {H'EA14 HaK Fiddler AQCHE, i 45 €753 U 2% 3) Z A IEAEIZ AT 1)

1o AT ERS W EARE RSP o] LLF L & ¥5 2 e H Fiddler /8EE (127.0.0.1, ¥il1: 8888) .

Like Firebug, Web Inspector, and Page Speed, Fiddler provides a waterfall diagram that provides insights as
to which assets are taking longer to load and which assets might be affecting the loading of other assets (Figure

10-15).

% Firebug, MUK A%, Page Speed —#f, Fiddler $2ff—/MNEAGK, IR NEEMLEH YT L H TR K
Izt R], MR TR A Ae g T e RN (K1 10-15) .

#Fiddler - HTTP Debugging Proxy
File Edit Rules Toolz Wiew Help

=) Comment *+Relssue X Remose = ¢ Resume Al # streaming i auobecode 3 Find ESawe |ﬁL.5mc

iR e it @: starencs | 35 tnspectors | amoresponder | @ recuest sufder | [Fikers — Timdline |
| Result [Protocel |

502 HTTR

fermibes —
fueade 0130 —
i ‘.
b b |
Food_pestiides-posin.jg b |
Peitkekpo. g [
e |
fybang 12111502 png]
Jiprte_rasthead_date_sechiad @ ol |
& e
frmbes [
i1 - u

Figure 10-15. Fiddler waterfall diagram

10-15 Fiddler [#)3%A0 &

Selecting one or more resources from the panel on the left shows them in the main view. Click the Timeline
tab to visualize the assets over the wire. This view provides the timing of each asset relative to other assets, which
allows you to study the effects of different loading strategies and makes it more obvious when something is

blocking.

FE LR (K 22 M AR PP AN AT s i N TR AR 25 m] AR B0 R 45 1 DR . SRR I SR A 1
BEAAARIC B U W) T IAR JEL, AERET LAWF AN RD N 28RS R OR AR A B 28 14 Jit DAL S B A28

The Statistics tab shows a detailed view of the actual performance of all selected assets—giving insight into
DNS Lookup and TCP/IP Connect times—as well as a breakout of the size of and type of the various assets being

requested (Figure 10-16).

LAL P

U ARZE W T T IR0 R S b PR B B 40 15 A0 Bl —— (55 DNS fi# #7 F1 TCP/IP 345) i) [1]
RPN RBEEQE R (F 10-16)

lf 2ocuest Buscier | [Fiters | = Timsine
Gremes | Eieeetos | £ AudoRescnder
eques T COURCT 54 o
Eytes Sent: 33,323 —
Bytes Received: 375,182
ACTUAL FERFORMANCE
FEeEquests started acs 1745 7hR: 1573
Res ponses Comoleted AT 1Fie8:11:EZ2
agoregare Sesfion Cime: DO:0O0:1Z:S6ET
sequence [clock] time: DOI0OD:45.E7IE780
DHE Lodkup Time: 1, 4 DEmMs
TP IF Connect Time: 421ms -
RESFONSE LCODES
HTTR/I0E; 3
HTTF200: 51
IRESPONSE BWTES ([by Conbent-Type)
tacErigan: 1,548
application—shockosave-Tlash: 32,089
applicationf-javascripe: 120,281
textfoss: 39,4812
_ ~headers: 1B.4lé
image/ipeg: 212,662
image/png: 14,383
textyhtml; 37,603
imagesgiT: 46,6949 _T__.I

Figure 10-16. Fiddler Statistics tab

10-16 Fiddler Mgt B %

This data helps you decide which areas should be investigated further. For example, long DNS Lookup and

TCP/IP Connect times may indicate a problem with the network. The resource chart makes it obvious which types

of assets comprise the bulk of the page load, identifying possible candidates for deferred loading or profiling (in

the case of scripts).

XL B R R R
IR 194 2% fi) L
RN, B Rt

IR Ly NG AT RN R Ao i, DNS figdfr Al TCP/IP]
DR P T AW S MR S
Aot CAERASRE) .

I AR T g
TR SAE DI N A P EEI R, e s] e 5 22

b =z
=1
(9P

7

18

Y Slow

The YSlow tool provides performance insights into the overall loading and execution of the initial page view.
This tool was originally developed internally at Yahoo! by Steve Souders as a Firefox addon (via GreaseMonkey).
It has been made available to the public as a Firebug addon, and is maintained and updated regularly by Yahoo!

developers. Visit http://developer.yahoo.com/yslow/ for installation instructions and other product details.

YSlow T HBEM IR AR EEHT 4R L 1P B HEAR I B RE T ik FE I e BE B BeW) 1 Yahoo! W1 Steve
Souders JF&, 1f 4 Firefox 4fiff (il GreaseMonkey) . ‘& C.48 Kk Aii A—A Firebug i1, 1 Yahoo! JFA&

N R YES IF o B o e S HAt ™ 5 4175 2 UL hittp://developer.yahoo.com/yslow/

YSlow scores the loading of external assets to the page, provides a report on page performance, and gives tips
for improving loading speed. The scoring it provides is based on extensive research done by performance experts.
Applying this feedback and reading more about the details behind the scoring helps ensure the fastest possible

page load experience with the minimal number of resources.

YSlow J SUIR N KISM R BEMVT50, o i PERE AL, IF4s e my InA3ad B it il e 3R PP oy
HFPEREL ZA Y 2T AR BRI, JFRBEPE 2 H 5 2 141y, A 8T DU MR B
iy O Fme bR (1 DT A AR 5K o

Figure 10-17 shows YSlow's default view of a web page that has been analyzed. It will make suggestions for
optimizing the loading and rendering speed of the page. Each of the scores includes a detailed view with

additional information and an explanation of the rule's rationale.

10-17 $78 7 YSlow BRI M G TR e S OG- AAE I 280 By S B i e BN F
TR N B R BRI L, DB T U B e R

Jﬂr!’ o || Console HTML CS5 Script DOM MNet | YSlow v
ALL (22) FILTERBY: CONTENT (6) | COOKIE (2) | €SS (6) | IMAGES (2) | JAVASCRIPT (4)
F Make fewer HTTP requests
T g Grade F on Make fewer HTTP requs
F Use a Content Delivery Network (CDN) q
F Add Explres headers Phis pagpe has | el Javascjipn s
P Flols prage Has &5 ewtarival bacKoroui
C Compress components with gzip
i Uadveasing tho ELE R ol O e e
A Pur CSSar rap pagey resulting in faster page (vadd. 5
3 iy e |+1_||-|:H_glu scripts laTo ome sk
C Put JavaScript at bottom ind (MaBe EPE
A Avoid C55 expressions
nRead More
Bl A wa 1 N " 1 i e an N W

Figure 10-17. YSlow: All results

K 10-17 YSlow: 4>¥shH

In general, improving the overall score will result in faster loading and execution of scripts. Figure 10-18
shows the results filtered by the JAVASCRIPT option, with some advice about how to optimize script delivery

and execution.

IR, PRV R R R N A IZ AT . K] 10-18 TR H B JAVASCRIPT JE Tk

WIEMEIR, L@, T WAL A R Az 47

'@ i Console HTML €SS Script

DOM MNet YSlow

| Grade | Components | Statistics | Tools Rulzsers | ¥Slowiva)

Grﬂ(le L Dveiall perfaiimance scam 65 Ruledser applied; YSlawivai WIRL: it o o v
| |5} s

ALL (22) FILTER BY: CONTENT (5} | COOKIE (2) | €55 (8) | IMAGES (2) | JAVASCRIPT (4} | 51

C Put JavaScript at hottom

M/ A Make JavaScript and C%5 sxtarnal

B Minify JavaScript and CS5

Grade B on Minify JavaScript ard CS5

A Remove duplicate JavaScript and €S8

Figure 10-18. YSlow: JavaScript results

K< 10-18 YSlow: JavaScript 251

When interpreting the results, keep in mind that there may be exceptions to consider. These might include
deciding when to make multiple requests for scripts versus combining into a single request, and which scripts or

functions to defer until after the page renders.

FEPHTETIRIT, S E 2 B R LR AME I WG gRE R A 2 AT R EIF A iR, B
LR G IR B3 b 5N, 4 A DT G 2 e IR N2 o

dynaTrace Ajax Edition Ajax fixf] dynaTrace

The developers of dynaTrace, a robust Java/.NET performance diagnostic tool, have released an "Ajax
Edition" that measures Internet Explorer performance (a Firefox version is coming soon). This free tool provides
an end-to-end performance analysis, from network and page rendering to runtime scripts and CPU usage. The
reports display all aspects together, so you can easily find where any bottlenecks may be occurring. The results

can be exported for further dissection and analysis. To download, visit http://ajax.dynatrace.com/pages/.

dynaTrace »& /M9 K1 Java/ NET PEREZ T T, "EHIJFAN R ELEAN T Ajax JH Tl &
Internet Explorer f{IPERE (Firefox MR tHIL) o XA 2l THSRAL 7> 3 i PERE 7T 4%
MM RIGTIE S, SIRIAIEATIN (B AT CPU &y IR A RE T o I35 W fg AT 5 SR AE i, PTRUR
IR 7Y, &3/5/i T ;SR 4B TR i VA I i 231 ST S S AR =

http://ajax.dynatrace.com/pages/ .

The Summary report shown in Figure 10-19 provides a visual overview that allows you to quickly determine
which area or areas need more attention. From here you can drill down into the various narrower reports for more

granular detail regarding that particular aspect of performance.

ARG W 10-19 Fros, et 7 ANMETEALIOMESE, AR EAnIE me Ll Dkl 28 2 5% . WX LA
LR SIR B BAR KR S, G637 PERE i s 2 409 .

The Network view, shown in Figure 10-20, provides a highly detailed report that breaks out time spent in each
aspect of the network life cycle, including DNS lookup, connection, and server response times. This guides you to
the specific areas of the network that might require some tuning. The panels below the report show the request and

response headers (on the left) and the actual request response (on the right).

WAL AT 10-20 Bior, St 1 51 2 A iy F JIRE AN B BT 28 I 18] (AR 3 PEAE I3 &, {245 DNS
fibT, e, MRS A NI TA] . R G ARIE N 2% b aT e 75 S A RS E X e R T TR B R R
TSR N AR S (2D MSEBRESR AN CHAD .

AdynaTrace AJAX Edition
File %iaw Halp

| v & By | B ED g | A

1":: P \Waloome | B Summary 527 \.

i [T | Start Tme [5] = | Netwnok [ms]| dsvaScrpt[ms]| Rendering [ms][Page Load Time [ms] |
bt/ fraoo.com,’ 'S8 £ 1120 =] 2415
' Resources Metwiork
mumber af resources loaded via network ar from browsar cache: T spart on netwiark acavikies. Paralel activities @ acumalated,

D OE b 45 W X M K 4 £ O = e ' -.J.wnml_
waaots | [10 - 11144 ms
| T385
care

Botha HTML SO © meps B laasor ¥ i wOis Cornect B Sewer 8 Transfer

JavaScript Triggers JavaScript APIs
Time spent on JavaScript execubon, Briggered by shown events, Time spenk on JavaScripl executon from shown #4815,
| ¢ —210 m) T R
E b L mef | W &ﬁl
i |ses maf—4 S 2T my
|men met—
- chinl> & ad_ge 10 0 Ui 020 eam_L016
mnipi= o Load Evants e raman ieausabdwuhawl 0,18 @ Oibars
Page Titip: f#yahoo oo :
cru 1. N - C— T o T et S
|| 1avascrpt | 1 b e §Bdr 'H WIRINE-
|| rendering l IEl §E 1 N i fimEnl EE
| Metwork 15 = |
|| Event : . o] i |
e T e I t }
J_.l 13 25 Hs 45

Figure 10-19. dynaTrace Ajax Edition: Summary report

K] 10-19 dynaTrace Ajax Edition: st 254 25

Selecting the JavaScript Triggers view brings up a detailed report on each event that fired during the trace (see
Figure 10-21). From here you can drill into specific events ("load", "click”, "mouseover", etc.) to find the root

cause of runtime performance issues.

HEFE JavaScript filt A ML KA BIERER IS RE b BT O RE A ARG PR TS CIni 10-21) o AR HLR
A IR BN 2 1 (“load”s “click”, “mouseover” 555) 23 R INIZAT I P e i) 81 A JR Ao

This view includes any dynamic (Ajax) requests that a event may be triggering and any script "callback" that
may be executed as a result of the request. This allows you to better understand the overall performance perceived

by your users, which, because of the asynchronous nature of Ajax, might not be obvious in a script profile report.

AN B S — A AT BE R AT RIS (Ajax) 15K, DURAE T RS R IMTB AT AT = A a7
AT ST R AR FH - PR s BB PERE, BT Ajax 5B RePE, 75— MR BT S T REA B 4

EEEKO

WA Trnee A FIFon O 1= F1| |
Fila o Heolp
LR B | BEE|F
Bk B Suray | L e F
I = - - = |
(R S —— 5= -
& alumsinir ol
L iched | b | Stns M | Sew. | i S | St e, | Sobil. = | Wabeore, | tia. EME, | Divredts, | Server . | Sraifie.. | Raferer | -
Wi, e [E - [ET] M oos L5
Wep e e mo L B Lo o4 L= L LEl nog §51 L s i
i Ly L - ETEE, e 13 | A7 L& fog e] 1.3 o
R Lo, T . ON G, WTER E T [Tt ol [
hRmdiyirg L., m Besl BOD ., WL BT Ll (5] 054 oo = L] LASEN L
heg s, m Bl 00 .. el 192 k % Ry o o a3 E37 kbt
kg fdmpd . ma a2 g et | L =] a 0¥ oA paig [lE L] [e
WA b L] Hat AW . s E ¥ = +: L3 Oom D er (5] 03 Mg :l
) e R W e T sl b e T it maa |
! e st e =it pan ﬂ
W dgit-Erdading oo delan wam b = pully, w - “sedmafiTy
AT O T i a0, oy Thadulas . typs Easd = |
PULEl 1 e BAR B,
pner-Aget; il D srpahle, S T.0; Wikdren MY L0 Trdng 0 SET SR Bdn T
"er:':;’f”:' beacaalinkr B,
b = R TR PR NN) P] T ey T i ﬁi:’:':”n;_"‘“' L
E VISHEVETES: ["0 ld@E]
¥ ; snas: dwwtienic)
jDanie: Sum, 2 R N0 15510 AT |
ACI- LG mur-age =i |3 BREAT = et By el
b ‘o, 37 How Z00% 15:19:00 GRT rhis ksssoslizk = w. garStrisg |“BEATH LI
Lanlun] Types apeaiinh s gl EREA. A & £ pAETAQ]
Puge: S34T1E uhis pedaleaps = &
v i ; e i rErmEE;
e 7T LT i =
I =1 | i |
R e

Figure 10-20. dynaTrace Ajax Edition: Network report

10-20 dynaTrace Ajax Edition: MZ54R 15

LA 0 [!"
Fig
B |E5ea |0 E P
[E] Eh\gi:nylr;e-_'i: 5-.unu_la-"|:' -|'-: PaeFats & ¥
=) A o o |-=snsnnn1- = B -
T = Showing: lavsScriph (Mbered) | Meboork (ilbered) | 8 esgenimg (Sibered) | Custom babie (it er (al)
[Timechat st T [oua.. = | Eimi]crutie.] sm| [acteiy tind [oatais | apis -
W 567 fETRT] 19800 1Im.37 183 lmasirpl molseout avent on <l
o TEED 107770 a0s1 A2 1M lavaSript molgeout avent on <a clasesti-f- ...
Lol e 74353 2157 #1875 B4 K noLEecwer pret on < id="pau 2. 1T Tl
& aw T e 121.30 miz e LR meLgEcver et on = class="p-fp.,,
e 4.68 BEC AL L4218 1300 =5 AR MOLEECwEr Eweril on <8 cles="y=p...
[4.2 357,80 6198 46,07 2067 AR moLEeover @il o <img chiss=" 1.
ﬁ 1551 aei Tl 431 Lo 1468 MK TMRLEECHE TFRTE 0N chlﬂﬁ-'l--- T I‘J:'
i L
Acthity [apt | Start] Durabion [me] 16 [me]] To=]
=] EL T3] core_L.0,18 EXE] 121861 142 12
1 @ hideMod ke conlentca.. 5.84 121860 142,10
1 LAY T > pui 02,1 588 121558 14E. 05
2 AL aafTimeout LM 5,03 IZ1RLED 14196
= g LerasSer ot e i JaSer ipt L] 121450 14105 J
d [a DOOE Link GratTimasn - 6,08 121038 14158 -
5 @ <anomymoE> [N 5.8 o ooz
= pul 021 5.40 [aTip] [uli] =
| : | "
Contr bt irsrcation: | B = | || Stock Bl Tokal [= X = M Fl
2ed_pmieciCh| 1 sl damChror s Link J. . L
PRy (i ¥® lavaScript Esscuton o. h.mpplydg. Lf:
m?:'i\:brrg {Calculating gera... T . mr'm‘:u'r o e
@ coeaCumannuodik 1 @ <oy moLss n. s
S - 2 2 hicdekdo & 1] e = (il ¥ ascIncervelik, n) :
A aRendering (Scheduing Ly == @ [ac] 0 mptEy |
@ _tokeriza) H 13 3 onBiockMo_sacut o. idi =,
=} @L[az] o. incervals 4,
ﬁ itertioics i 1 "|-| & 1o 0. cancels fenctiomi| =
4] coneers [orave i 0 i R
31 roeats fowred (1 nore sed ecieady

Figure 10-21. dynaTrace Ajax Edition PurePaths panel

10-21 Ajax it dynaTrace 1] PurePaths [fli 4

Summary &%

When web pages or applications begin to feel slow, analyzing assets as they come over the wire and profiling

scripts while they are running allows you to focus your optimization efforts where they are needed most.

24 SN RE AL TN G BT 9 AR AT, AT AR (RS AT PERE, A URRERS G pRs D AR AR L Re 22

55 AT o

* Use a network analyzer to identify bottlenecks in the loading of scripts and other page assets; this helps

determine where script deferral or profiling may be needed.

AP R0 48 0 A i R H DN B BAS R & 0T SR IR ARSI A, I AT Bl 1 P MR LS A T ZERE IR N4k, sl
BEATHE— 2B

* Although conventional wisdom says to minimize the number of HTTP requests, deferring scripts whenever

possible allows the page to render more quickly, providing users with a better overall experience.

FEGEIRR S VR A I /> HTTP SR (K, R SR A BAIAS LU e Qe R s b, 1 Y
UL TELS (AR AT

* Use a profiler to identify slow areas in script execution, examining the time spent in each function, the number
of times a function is called, and the callstack itself provides a number of clues as to where optimization efforts

should be focused.

A P RE 20 M o £ A IS AT IS T BE MR IR AR 73, A B RE A eR BT AL SR OIS 8], DAL o e i D (R TR
T IR 8 5 PR SRR ZOR R W Lt 5 Y 24 5% 4K

* Although time spent and number of calls are usually the most valuable bits of data, looking more closely at how

functions are being called might yield other optimization candidates.

B ARAE DRI TE) R FH RHOE W 2 Bt b BT U E R R, 3 N A 0 5 R AU R T IR, AT e
eIk,

These tools help to demystify the generally hostile programming environments that modern code must run in.
Using them prior to beginning optimization will ensure that development time is spent focusing on the right

problems.

XL TR AR LEPUACACHS T Za AT A G RE A 58 R AN fEi AL o AETT AR DAL AR Z B e AT, B ORTT A

(] FIAE fp e i R) 70 L
(&%)

